一元二次方程《配方法》说课稿_教学设计 - 查字典数学网
数学一元二次方程《配方法》...
首页>数学教研>教学设计>一元二次方...

一元二次方程《配方法》说课稿

2016-04-27 收藏

下面我将根据自己编写的教案,从教学目标的确定、教学重点与教学难点的分析、教学方式与手段的选择、教学过程的设计四方面对本节课的教学作一个说明。

一、教学目标的确定

配方法是初中教学中的重要内容,也是一种重要的数学方法。配方的方法在以后的学习中经常用到,如在二次根式、代数式的变形及二次函数中有广泛应用。对于一元二次方程,配方法是解法中的通法,它的推导建立在直接开平方法的基础上,同时它又是推导公式法的基础。因此,根据课标要求和学生实际情况,制定了如下的教学目标:

1、理解并掌握配方法;

2、通过探索配方法的过程,培养观察、比较、分析、概括、归纳的能力;

3、通过配方法的探究活动,培养学生勇于探索的良好学习习惯,感受数学的严谨性。

二、教学重点与教学难点的分析

本节课是配方法的起始课,教学重点是用配方法解二次项系数是1的一元二次方程。

学生在前一节课已经掌握了直接开平方解一边是完全平方式的一元二次方程的方法,本节课中研究的方程不具备上述结构特点,需要合理添加条件进行转化,即配方,而学生在以前的学习中没有类似经验,因此对配方方法的探索是本节课的教学难点。

三、教学方式与教学手段的说明

采取启发探究式教学,在教学中主要以启发学生进行探究的形式展开,利用学生已有的知识,让学生自主探索,通过对比,明晰方程结构特征,联想完全平方公式,对方程进行转化,发现、理解并初步掌握配方法。

在教学中,使用PPT课件,丰富教学内容和形式。

四、教学过程的设计

根据本节课的教学目标,我将教学过程设计为以下五个环节:活动一,创设情境,提出问题;活动二,对比探究,解决问题;活动三,随堂练习,巩固深化;活动四,继续探究,拓展提升;活动五,回顾梳理,分层作业。

下面,我将按这五个环节进行具体说明。

(一)创设情境,提出问题

首先以实际问题引入:要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽应各是多少?将学生放置于实际问题的背景下,有助于激发学生的主动性和求知欲。

这个问题中的数量关系比较简单,学生很容易列出相应的方程:设场地宽xm,长( )m。根据矩形面积为16m2,列方程 ,即 。但是通过观察方程结构,学生发现这个方程暂时不会解,感受到问题的存在。

这时教师通过问题(2)如何解所列方程?怎样把它转化为我们已经会解的方程?引导学生初步思考、回顾已有的知识,主动参与到本节课的研究中来。

(二)对比探究,解决问题

本节课力求在学生已有知识和经验基础之上,让学生通过观察、对比、联想、转化,自主发现解决问题的方向和规律,理解和掌握配方法。因此,在这一阶段活动中以问题为引导设置了四个具体环节。

问题(1):我们会解什么样的一元二次方程?举例说明。

用问题唤起学生的记忆,明确现在会求解的方程的特点是:等号一边是完全平方式,另一边是一个非负常数的形式,运用直接开平方可以求解。这是后面配方转化的目标,也是对比研究的基础。

问题(2):把你给出的方程化为一般形式,并把两个方程进行对比,你能得到什么启发?

教师选取学生所举其中一例,展示解方程的过程并把它化为一般形式。如 ,它可用直接开平方求解,化成一般形式为 ,虽然学生各自选取的例子不同,但都能进行这种形式的改变,启发学生逆向研究问题的思维方式。通过这一过程,引导学生发现能用直接开平方法求解的方程都可以化成一般形式,那么一般形式的方程是否也能转化为可以直接开平方的形式呢?于是,实现这种转化就成为探索的方向,如何进行合理的转化则是下一步探究活动的核心。

问题(3):探索 的求解过程和方法。

这里要给学生充分的时间进行思考和交流,教师在学生小组交流后,组织全班进行讨论,通过观察方程的结构与完全平方式的联系找到问题的突破口。

在问题(1)、(2)的基础上,学生获得了解决问题的基本思路,即将方程转化成 的形式。学生通过观察方程结构,发现 虽然不是完全平方式,但前两项具有完全平方式的特征,只要通过添加条件即可凑成完全平方式即配方。因此,为避免干扰,先将常数项-16移项至方程右边,此时方程化为 。对比完全平方式,学生不难发现,方程左边加上一个常数9,就能凑成完全平方式,因此可以根据等式性质在方程两边都加上9,将方程化为 ,即 ,从而成功地完成了由不会解到会解的转化。

我校是一所市级示范校,学生有一定的学习能力,对完全平方公式的掌握也比较到位,基于这样的学情,对这一阶段探究活动的安排,我没有采用教科书上的示例,即用 与上节课研究过的方程 进行结构上的比较,而是采取直接与完全平方式做对比,这样做能够更加突显配方的本质,帮助学生发现常数项的确定与一次项系数之间的关系。设置问题时有意识地增大了思维的力度,引导学生认识到配方的必要性、发现配方的一般规律,锻炼了学生的能力。

在学生在探究完成的基础上,师生把探究出的解题过程和方法以框图的形式完整呈现,

两边加9(即 )

使左边配成

的形式

移项

左边写成

平方形式

降次

解一次方程

并重点关注配方的过程和关键步骤。

利用框图的形式整理出完整的解题过程和方法,让学生进一步体会配方的意义和规律。同时,利用框图再次明晰解方程的程序化思想。

在此基础上,解决创设情景中提出的实际问题,提醒学生注意选择符合实际的解,通过解决这一实际问题,既让学生感受到生活处处有数学,又能使学生利用已有的知识解决问题,体会到成功的喜悦。

此时,教师归纳:通过配成完全平方形式来解一元二次方程的方法,叫做配方法。

问题(4):配方的目的是什么?配方时应注意什么?

在完成这一系列探究活动后,教师提出问题引导学生回顾探究过程,进行阶段性小结。明确配方的目的是通过配成完全平方形式来解方程。对二次项系数是1的一元二次方程配方时要注意在方程两边都加上一次项系数一半的平方。

(三)随堂练习,巩固深化

教师出示问题

用配方法解方程:

(1) ;

(3) ;

(5) 。

师生共同关注一元二次方程中一次项系数不同时,对于配方规律的进一步运用。

其中(1)至(4)题,通过解一次项系数分别是偶数、奇数、分数、无理数的一元二次方程,加深对配方的规律的认识,同时还关注了符号的问题。第(5)题的二次项系数不是1,但是它的结构特征也符合完全平方式的前两项的形式,通过此题考验学生是否真正理解配方法,并能根据题目特点灵活运用配方法求解。

通过这一组练习,巩固利用配方法解方程的基本技能,深化对配方的理解。同时为活动四的探究奠定基础。

(四)继续探究,拓展提升

经过探究活动和巩固练习,学生对一次项系数是具体数字的一元二次方程的配方规律有了初步的掌握,为了加深这一认识,教师继续出示问题:

对于方程 怎样用配方法求解?

把研究的对象从具体数字抽象到字母表示的数字,体现从特殊到一般,从具体到抽象的思维过程,巩固对配方的认识,同时,为后续学习中用配方法推导求根公式做铺垫。

学生独立尝试,教师适时指导,归纳用配方法解一元二次方程的步骤。其间注意在配方后提示学生讨论 的性质,培养学生严谨的学习态度。

(五)小结梳理,分层作业

用你的语言描述一下配方法解一元二次方程的基本步骤和需注意的问题。

教师引导学生进行反思、归纳配方法解一元二次方程的基本思路、步骤及注意事项。巩固对课堂知识的理解和掌握,同时进一步体会解一元二次方程时降次的基本策略和转化的思想。

最后,教师布置作业:

(1)基础题:

(2)思考题:

分层布置作业,既巩固本节主要内容,又有让学有余力的学生有思考和提升的空间。思考题为后面深入研究配方法,完善对配方法的认识做准备。



查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
大家都在看

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限