2016-04-27
收藏
【摘要】初三数学正多边形和圆导学案通过学习使学生理解正多边形概念,初步掌握正多边形与圆的关系的第一个定理。
教学目标:
(1)使学生理解正多边形概念,初步掌握正多边形与圆的关系的第一个定理;
(2)通过正多边形定义教学,培养学生归纳能力;通过正多边形与圆关系定理的教学培养学生观察、猜想、推理、迁移能力;
(3)进一步向学生渗透特殊一般再一般特殊的唯物辩证法思想.
教学重点:
正多边形的概念与正多边形和圆的关系的第一个定理.
教学难点:
对定理的理解以及定理的证明方法.
教学活动设计:
(一)观察、分析、归纳:
观察、分析:1.等边三角形的边、角各有什么性质?
2.正方形的边、角各有什么性质?
归纳:等边三角形与正方形的边、角性质的共同点.
教师组织学生进行,并可以提问学生问题.
(二)正多边形的概念:
(1)概念:各边相等、各角也相等的多边形叫做正多边形.如果一个正多边形有n(n3)条边,就叫正n边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形.
(2)概念理解:
①请同学们举例,自己在日常生活中见过的正多边形.(正三角形、正方形、正六边形,.)
②矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?
矩形不是正多边形,因为边不一定相等.菱形不是正多边形,因为角不一定相等.
(三)分析、发现:
问题:正多边形与圆有什么关系呢?
发现:正三角形与正方形都有内切圆和外接圆,并且为同心圆.
分析:正三角形三个顶点把圆三等分;正方形的四个顶点把圆四等分.要将圆五等分,把等分点顺次连结,可得正五边形.要将圆六等分呢?
(四)多边形和圆的关系的定理
定理:把圆分成n(n3)等份:
(1)依次连结各分点所得的多边形是这个圆的内接正n边形;
(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.
我们以n=5的情况进行证明.
已知:⊙O中, = = = = ,TP、PQ、QR、RS、ST分别是经过点A、B、C、D、E的⊙O的切线.
求证:(1)五边形ABCDE是⊙O的内接正五边形;
(2)五边形PQRST是⊙O的外切正五边形.
证明:(略)
引导学生分析、归纳证明思路:
弧相等
说明:(1)要判定一个多边形是不是正多边形,除根据定义来判定外,还可以根据这个定理来判定,即:①依次连结圆的n(n3)等分点,所得的多边形是正多迫形;②经过圆的n(n3)等分点作圆的切线,相邻切线相交成的多边形是正多边形.
(2)要注意定理中的依次、相邻等条件.
(3)此定理被称为正多边形的判定定理,我们可以根据它判断一多边形为正多边形或根据它作正多边形.
(五)初步应用
P157练习
1、(口答)矩形是正多边形吗?菱形是正多边形吗?为什么?
2.求证:正五边形的对角线相等.
3.如图,已知点A、B、C、D、E是⊙O的5等分点,画出⊙O的内接和外切正五边形.
(六)小结:
知识:(1)正多边形的概念.(2)n等分圆周(n3)可得圆的内接正n边形和圆的外切正n边形.
能力和方法:正多边形的证明方法和思路,正多边形判断能力
(七)作业 教材P172习题A组2、3.
对小学数学作业设计的认识与实践研究
结合数学教学,培养良好的思维品质
优化课堂提问方式 培养学生思维品质
培养小学生实践能力的探索
小学数学论文的撰写方法
谈小学估算教学中的情境创设
素质教育下的数学教育与评价体制
在小学数学教学中培养学生自主学习 自主发展
在小学低年级数学教学中尝试自主探究学习
让数学学习走进生活——谈小学数学中的概念教学
小学数学教学中养成教育的探索
中国学生需要怎样的数学教育
运用比较教学,提高学生解题能力
“做数学”能让课堂充满生命的活力
让学生快乐学数学
坚持因材施教原则 全面提高教学质量
小学生数学学习方法指导及培养的探索
新课标下的作业设计要突出“四化”
数学课堂教学创造力培养的探索
数学课堂教学中的说学训练
在熟悉的事物中学习数学
低年级学数学观察能力的培养
改变课堂教学行为,体现学生主体地位
以 学 定 教 的 尝 试
将数学与生活紧密相连 课堂中引导学生自主探究
什么是一堂好的数学课
发挥新教材的指导作用 激活学生自主学习的潜能
反思我的“课改之路”
引导学生在探索中自觉感悟获取知识
新课标理念下的数学教学的“三忌”与“三宜”
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |