2016-04-25
收藏
临近中考,学生要有一定的自主性,光跟着老师跑没用。因为每位学生对知识点的掌握程度不同,复习进度也不同。查字典数学网为大家提供了中考数学备考专项练习,希望能够切实的帮助到大家。
一、选择题
1. (2014四川巴中,第8题3分)在Rt△ABC中,C=90,sinA=1/2 ,则tanB的值为()
A. 1B.3 C.1/2 D.2
考点:锐角三角函数.
分析:根据题意作出直角△ABC,然后根据sinA= ,设一条直角边BC为5x,斜边AB为13x,根据勾股定理求出另一条直角边AC的长度,然后根据三角函数的定义可求出tanB.
解答:∵sinA= ,设BC=5x,AB=13x,则AC= =12x,
2. (2014山东威海,第8题3分)如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则AOB的正弦值是( )
A.1 B. 1/2C. 3/5D.2/3
考点: 锐角三角函数的定义;三角形的面积;勾股定理
分析: 作ACOB于点C,利用勾股定理求得AC和AB的长,根据正弦的定义即可求解.
解答: 解:作ACOB于点C.
则AC= ,
3.(2014四川凉山州,第10题,4分)在△ABC中,若|cosA﹣|+(1﹣tanB)2=0,则C的度数是( )
A. 45 B. 60 C. 75 D. 105
考点: 特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方;三角形内角和定理
分析: 根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出C的度数.
解答: 解:由题意,得 cosA=,tanB=1,
A=60,B=45,
4.(2014甘肃兰州,第5题4分)如图,在Rt△ABC中,C=90,BC=3,AC=4,那么cosA的值等于()
A.1/2 B.3/5 C. 2D.1/5
考点: 锐角三角函数的定义;勾股定理.
分析: 首先运用勾股定理求出斜边的长度,再利用锐角三角函数的定义求解.
解答: 解:∵在Rt△ABC中,C=90,AC=4,BC=3,
5.(2014广州,第3题3分)如图1,在边长为1的小正方形组成的网格中, 的三个顶点均在格点上,则 ( ).
(A) (B) (C) (D)
【考点】正切的定义.
【分析】 .
【答案】 D
6.(2014浙江金华,第6题4分)如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为 ,则t的值是【 】
A.1 B.1.5 C.2 D.3
【答案】C.
【解析】
7.(2014滨州,第11题3分)在Rt△ACB中,C=90,AB=10,sinA= ,cosA= ,tanA= ,则BC的长为( )
A. 6 B. 7.5 C. 8 D. 12.5
考点: 解直角三角形
分析: 根据三角函数的定义来解决,由sinA= = ,得到BC= = .
解答: 解:∵C=90AB=10,
8.(2014扬州,第7题,3分)如图,已知AOB=60,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()
A. 3 B. 4 C. 5 D. 6
(第1题图)
考点: 含30度角的直角三角形;等腰三角形的性质
分析: 过P作PDOB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD﹣MD即可求出OM的长.
解答: 解:过P作PDOB,交OB于点D,
在Rt△OPD中,cos60= = ,OP=12,
OD=6,
∵PM=PN,PDMN,MN=2,
9.(2014四川自贡,第10题4分)如图,在半径为1的⊙O中,AOB=45,则sinC的值为()
A.1 B. 1/2C. 2D.3
考点: 圆周角定理;勾股定理;锐角三角函数的定义
专题: 压轴题.
分析: 首先过点A作ADOB于点D,由在Rt△AOD中,AOB=45,可求得AD与OD的长,继而可得BD的长,然后由勾股定理求得AB的长,继而可求得sinC的值.
解答: 解:过点A作ADOB于点D,
∵在Rt△AOD中,AOB=45,
OD=AD=OAcos45= 1= ,
BD=OB﹣OD=1﹣ ,
AB= = ,
∵AC是⊙O的直径,
10.(2014浙江湖州,第6题3分)如图,已知Rt△ABC中,C=90,AC=4,tanA= ,则BC的长是()
A.2 B. 8 C. 2 D. 4
分析:根据锐角三角函数定义得出tanA= ,代入求出即可.
11.(2014广西来宾,第17题3分)如图,Rt△ABC中,C=90,B=30,BC=6,则AB的长为 4 .
考点: 解直角三角形.
分析: 根据cosB= 及特殊角的三角函数值解题.
解答: 解:∵cosB= ,即cos30= ,
12.(2014年贵州安顺,第9题3分)如图,在Rt△ABC中,C=90,A=30,E为AB上一点且AE:EB=4:1,EFAC于F,连接FB,则tanCFB的值等于()
A.30 A B.45 C.60 D.15
考点: 锐角三角函数的定义..
分析: tanCFB的值就是直角△BCF中,BC与CF的比值,设BC=x,则BC与CF就可以用x表示出来.就可以求解.
解答: 解:根据题意:在Rt△ABC中,C=90,A=30,
∵EFAC,
EF∥BC,
∵AE:EB=4:1,
=5,
= ,
设AB=2x,则BC=x,AC= x.
13.(2014年广东汕尾,第7题4分)在Rt△ABC中,C=90,若sinA= ,则cosB的值是()
A. 1B.3 C. 2D.-1
分析:根据互余两角的三角函数关系进行解答.
14.(2014毕节地区,第15题3分)如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CDAB交AB于D.已知cosACD= ,BC=4,则AC的长为( )
A. 1 B.4
C. 3 D.2
考点: 圆周角定理;解直角三角形
分析: 由以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CDAB交AB于D.易得ACD=B,又由cosACD= ,BC=4,即可求得答案.
解答: 解:∵AB为直径,
ACB=90,
ACD+BCD=90,
∵CDAB,
BCD+B=90,
ACD,
∵cosACD= ,
cosB= ,
tanB= ,
15.(2014年天津市,第2 题3分)cos60的值等于()
A. 1/2B. 1C.3 D.5
考点: 特殊角的三角函数值.
分析: 根据特殊角的三角函数值解题即可.
二、填空题
1. (2014年贵州黔东南11.(4分))cos60=.
考点: 特殊角的三角函数值.
分析: 根据特殊角的三角函数值计算.
2. (2014江苏苏州,第15题3分)如图,在△ABC中,AB=AC=5,BC=8.若BPC=BAC,则tanBPC=.
考点: 锐角三角函数的定义;等腰三角形的性质;勾股定理
分析: 先过点A作AEBC于点E,求得BAE=BAC,故BPC=BAE.再在Rt△BAE中,由勾股定理得AE的长,利用锐角三角函数的定义,求得tanBPC=tanBAE= .
解答: 解:过点A作AEBC于点E,
∵AB=AC=5,
BE=BC=8=4,BAE=BAC,
∵BPC=BAC,
BPC=BAE.
在Rt△BAE中,由勾股定理得
3.(2014四川内江,第23题,6分)如图,AOB=30,OP平分AOB,PCOB于点C.若OC=2,则PC的长是 .
考点: 含30度角的直角三角形;勾股定理;矩形的判定与性质.
专题: 计算题.
分析: 延长CP,与OA交于点Q,过P作PDOA,利用角平分线定理得到PD=PC,在直角三角形OQC中,利用锐角三角函数定义求出QC的长,在直角三角形QDP中,利用锐角三角函数定义表示出PQ,由QP+PC=QC,求出PC的长即可.
解答: 解:延长CP,与OA交于点Q,过P作PDOA,
∵OP平分AOB,PDOA,PCOB,
PD=PC,
在Rt△QOC中,AOB=30,OC=2,
QC=OCtan30=2 = ,APD=30,
在Rt△QPD中,cos30= = ,即PQ= DP= PC,
QC=PQ+PC,即 PC+PC= ,
4.(2014四川宜宾,第16题,3分)规定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,sin(x+y)=sinxcosy+cosxsiny.
据此判断下列等式成立的是 ②③④ (写出所有正确的序号)
①cos(﹣60
②sin75
③sin2x=2sinx
④sin(x﹣y)=sinxcosy﹣cosxsiny.
考点: 锐角三角函数的定义;特殊角的三角函数值.
专题: 新定义.
分析: 根据已知中的定义以及特殊角的三角函数值即可判断.
解答: 解:①cos(﹣60)=cos60=,命题错误;
②sin75=sin(30+45)=sin30cos45+cos30sin45= + = + = ,命题正确;
③sin2x=sinxcosx+cosxsinx═2sinxcosx,故命题正确;
④sin(x﹣y)=sinxcos(﹣y)+cosxsin(﹣y)=sinxcosy﹣cosxsiny,命题正确.
5.(2014甘肃白银、临夏,第15题4分)△ABC中,A、B都是锐角,若sinA= ,cosB=,则C= .
考点: 特殊角的三角函数值;三角形内角和定理.
分析: 先根据特殊角的三角函数值求出A、B的度数,再根据三角形内角和定理求出C即可作出判断.
解答: 解:∵△ABC中,A、B都是锐角sinA= ,cosB=,
B=60.
6. ( 2014广西贺州,第18题3分)网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sinA=.
考点: 锐角三角函数的定义;三角形的面积;勾股定理.
分析: 根据正弦是角的对边比斜边,可得答案.
解答: 解:如图,作ADBC于D,CEAB于E,
由勾股定理得AB=AC=2 ,BC=2 ,AD=3 ,
由BCAD=ABCE,
一年级下册数学期中复习资料找规律
一年级数学期中复习(分类与整理)
小学一年级数学下册期中复习资料
中考数学复习指导中考数学超常发挥的五个技巧
初二下册数学期中试卷及答案(成都市)
名师指点中考数学复习做好3方面梳理
小学二年级数学下册第六单元有余数的除法练习题
2016二年级期中数学试卷(青岛版)
初一数学试卷带答案(2016年下学期)
2016年人教版初一数学试卷下册
初三下册数学期中复习知识点之锐角三角函数
初三数学期中复习资料之二次函数的三种表达式
(春季学期)初一数学试卷分析范文
名师指点中考数学重难点的七大解题法
中考数学名师指点系统梳理知识点
初一数学试卷分析(下学期)16年
2016二年级下册数学期中试卷
初三下册数学期中复习重点三角函数的计算
初一数学期中试卷(2016学年下册)
2016中考数学一模备考专项练习相交线与平行
小学二年级下册数学期中测试卷
初二下册数学期中试卷及答案(综合测试)
2016年春季学期初一数学试卷模板
2016中考数学知识点方程与方程组
复习指导中考数学解题策略
2016中考数学一模备考专项练习三角形的边
初一数学期中试卷人教版2016
中考数学考前必做专题试题圆
2016小学一年级数学下册期中复习
2016中考数学知识点备考函数
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |