中考数学备考模拟题:必做_题型归纳 - 查字典数学网
数学中考数学备考模拟题:必做
首页>学习园地>题型归纳>中考数学备考模拟题:必做

中考数学备考模拟题:必做

2016-03-20 收藏

为了更有效地帮助学生梳理学过的知识,提高复习质量和效率,在中考中取得理想的成绩,下文为大家准备了中考数学备考模拟题:必做。

一、选择题

1. (2014山东威海,第9题3分)如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是( )

A. ∠BAC=70° B. ∠DOC=90° C. ∠BDC=35° D. ∠DAC=55°

考点: 角平分线的性质;三角形内角和定理

分析: 根据三角形的内角和定理列式计算即可求出∠BAC=70°,再根据角平分线的定义求出∠ABO,然后利用三角形的内角和定理求出∠AOB再根据对顶角相等可得∠DOC=∠AOB,根据邻补角的定义和角平分线的定义求出∠DCO,再利用三角形的内角和定理列式计算即可∠BDC,判断出AD为三角形的外角平分线,然后列式计算即可求出∠DAC.

解答: 解:∵∠ABC=50°,∠ACB=60°,

∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣50°﹣60°=70°,故A选项结论正确,

∵BD平分∠ABC,

∴∠ABO=∠ABC=×50°=25°,

在△ABO中,∠AOB=180°﹣∠BAC﹣∠ABO=180°﹣70°﹣25°=85°,

∴∠DOC=∠AOB=85°,故B选项结论错误;

∵CD平分∠ACE,

∴∠ACD=(180°﹣60°)=60°,

∴∠BDC=180°﹣85°﹣60°=35°,故C选项结论正确;

∵BD、CD分别是∠ABC和∠ACE的平分线,

∴AD是△ABC的外角平分线,

2. (2014山东临沂,第3题3分)如图,已知l1∥l2,∠A=40°,∠1=60°,则∠2的度数为()

A. 40° B. 60° C. 80° D. 100°

考点: 平行线的性质;三角形的外角性质.

分析: 根据两直线平行,内错角相等可得∠3=∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.

解答: 解:∵l1∥l2,

∴∠3=∠1=60°,

3. (2014江苏苏州,第6题3分)如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()

A. 30° B. 40° C. 45° D. 60°

考点: 等腰三角形的性质

分析: 先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.

解答: 解:∵△ABD中,AB=AD,∠B=80°,

∴∠B=∠ADB=80°,

∴∠ADC=180°﹣∠ADB=100°,

4.(2014福建福州,第6题4分)下列命题中,假命题是【 】

A.对顶角相等 B.三角形两边和小于第三边

C.菱形的四条边都相等 D.多边形的内角和等于360°

5.(2014台湾,第20题3分)如图,有一△ABC,今以B为圆心,AB长为半径画弧,交BC于D点,以C为圆心,AC长为半径画弧,交BC于E点.若∠B=40°,∠C=36°,则关于AD、AE、BE、CD的大小关系,下列何者正确?()

A.AD=AE B.AE

分析:由∠C∠B利用大角对大边得到AB

解:∵∠C∠B,

A. 85° B. 80°

C. 75° D. 70°

考点: 角平分线的性质,三角形外角性质.

分析: 首先角平分线的性质求得 的度数,然后利用三角形外角性质求得∠BDC的度数即可.

解答: 解: ∠ABC=70°,BD平分∠ABC

7. (2014泰州,第6题,3分)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()

A. 1,2,3 B. 1,1, C. 1,1, D. 1,2,

考点: 解直角三角形

专题: 新定义.

分析: A、根据三角形三边关系可知,不能构成三角形,依此即可作出判定;

B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;

C、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;

D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.

解答: 解:A、∵1+2=3,不能构成三角形,故选项错误;

B、∵12+12=( )2,是等腰直角三角形,故选项错误;

C、底边上的高是 = ,可知是顶角120°,底角30°的等腰三角形,故选项错误;

D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.

8. ( 2014广西玉林市、防城港市,第10题3分)在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()

A. 1cm

考点: 等腰三角形的性质;解一元一次不等式组;三角形三边关系.

分析: 设AB=AC=x,则BC=20﹣2x,根据三角形的三边关系即可得出结论.

解答: 解:∵在等腰△ABC中,AB=AC,其周长为20cm,

∴设AB=AC=xcm,则BC=(20﹣2x)cm,

9. (2014湖南邵阳,第5题3分)如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是( )

A. 45° B. 54° C. 40° D. 50°

考点: 平行线的性质;三角形内角和定理

分析: 根据三角形的内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,然后根据两直线平行,内错角相等可得∠ADE=∠BAD.

解答: 解:∵∠B=46°,∠C=54°,

∴∠BAC=180°﹣∠B﹣∠C=180°﹣46°﹣54°=80°,

∵AD平分∠BAC,

∴∠BAD= ∠BAC= ×80°=40°,

10.(2014台湾,第18题3分)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()

A.24 B.30 C.32 D.36

分析:根据角平分线的定义可得∠ABP=∠CBP,根据线段垂直平分线上的点到两端点的距离相等可得BP=CP,再根据等边对等角可得∠CBP=∠BCP,然后利用三角形的内角和等于180°列出方程求解即可.

解:∵直线M为∠ABC的角平分线,

∴∠ABP=∠CBP.

∵直线L为BC的中垂线,

∴BP=CP,

∴∠CBP=∠BCP,

∴∠ABP=∠CBP=∠BCP,

在△ABC中,3∠ABP+∠A+∠ACP=180°,

即3∠ABP+60°+24°=180°,

11. (2014湖北宜昌,第6题3分)已知三角形两边长分别为3和8,则该三角形第三边的长可能是()

A. 5 B. 10 C. 11 D. 12

考点: 三角形三边关系.

分析: 根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.

解答: 解:根据三角形的三边关系,得

第三边大于:8﹣3=5,而小于:3+8=11.

希望为大家提供的中考数学备考模拟题:必做的内容,能够对大家有用,更多相关内容,请及时关注!

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限