高二数学试题:2014年高二数学期末试题答案二_题型归纳 - 查字典数学网
数学高二数学试题:2014...
首页>学习园地>题型归纳>高二数学试...

高二数学试题:2014年高二数学期末试题答案二

2015-12-31 收藏

查字典数学网为大家提供高二数学试题:2014年高二数学期末试题答案二一文,供大家参考使用:

高二数学试题:2014年高二数学期末试题答案二

一、选择题

1.D【解析】由图像可知f(x)在(-,0)递减,在(0,+)递增,所以f(2a+b)1即2a+b4,原题等价于

,求a+1(b+1)的取值范围.画出不等式组表示的可行区域,利用直线斜率的意义可得a+1(b+1),5(1).

二、填空题

2.-1【解析】思路分析:按导数乘积运算法则先求导,然后由已知条件构造关于k的方程求解.

f(x)=(x+k)(x+2k)(x-3k)+x(x+2k)(x-3k)+x(x+k)(x-3k)+x(x+k)(x+2k)

故f(0)=-6k3,又f(0)=6,故k=-1.

三、解答题

3.解:(1)设投放B型电视机的金额为x万元,则投放A型电视机的金额为(10-x)万元,农民得到的总补贴f(x)=10(1)(10-x)+mln(x+1)=mln(x+1)-10(x)+1,(19).(5分)(没有指明x范围的扣1分)

(2)f(x)=x+1(m)-10(1)=x+1(x+1)=x+1(10m-1]),

令y=0,得x=10m-1(8分)

1若10m-11即0<m5(1),则f(x)在[1,9]为减函数,当x=1时,f(x)有最大值;新课 标第 一 网

2若1<10m-1<9即5(1)1,则F(X)在[1,10M-1)是增函数,在(10M-1,9]是减函数,当X=10M-1时,F(X)有最大值;

3若10m-19即m1,则f(x)在[1,9]是增函数,当x=9时,f(x)有最大值.

因此,当0<m5(1)时,投放B型电视机1万元,农民得到的总补贴最大.

当5(1)1时,投放B型电视机(10M-1)万元,农民得到的总补贴最大;

当m1时,投放B型电视机9万元,农民得到的总补贴最大.(13分)

4.解:(1)依题意,得a=2,e=a(c)=2(3),c=,b==1;

故椭圆C的方程为4(x2)+y2=1.(3分)

(2)方法一:点M与点N关于x轴对称,

设M(x1,y1),N(x1,-y1),不妨设y10.

由于点M在椭圆C上,

所以y1(2)=1-1().(*)(4分)

由已知T(-2,0),则=(x1+2,y1),=(x1+2,-y1),

=(x1+2,y1)(x1+2,-y1)=(x1+2)2-y1(2)=(x1+2)2-1()=4(5)x1(2)+4x1+3

方法二:点M与点N关于x轴对称,故设M(2cos ,sin ),N(2cos ,-sin ),

不妨设sin 0,由已知T(-2,0),则

=(2cos +2,sin )(2cos +2,-sin )=(2cos +2)2-sin2=5cos2+8cos +3=55(4)2-5(1).(6分)

故当cos =-5(4)时,取得最小值为-5(1),此时M5(3),

又点M在圆T上,代入圆的方程得到r2=25(13).

故圆T的方程为:(x+2)2+y2=25(13).(8分)

(3)方法一:设P(x0,y0),则直线MP的方程为:

y-y0=x0-x1(y0-y1)(x-x0),

令y=0,得xR=y0-y1(x1y0-x0y1),同理:xS=y0+y1(x1y0+x0y1),(10分)

故xRxS=1(2)(**)(11分)

又点M与点P在椭圆上,故x0(2)=4(1-y0(2)),x1(2)=4(1-y1(2)),(12分)

代入(**)式,得:xRxS=1(2)=1(2)=4.

所以===4为定值.(13分)

方法二:设M(2cos ,sin ),N(2cos ,-sin ),不妨设sin 0,P(2cos ,sin ),其中sin sin .则直线MP的方程为:y-sin =2cos -2cos (sin -sin )(x-2cos ),

令y=0,得xR=sin -sin (sin cos -cos sin ),

同理:xS=sin +sin (sin cos +cos sin ),(12分)

故xRxS=sin2-sin2(sin2cos2-cos2sin2)=sin2-sin2(sin2-sin2)=4.

所以===4为定值.(13分)

5.解:(1)f的反函数g(x)=ln x.设直线y=kx+1与g(x)=ln x相切于点P(x0,y0),则

?x0=e2,k=e-2.所以k=e-2.(3分)

(2)当x0,m0时,曲线y=f(x)与曲线y=mx2(m0)的公共点个数

即方程f(x)=mx2根的个数.

由f(x)=mx2?m=x2(ex),令v(x)=x2(ex)?v(x)=x4(x-2),

则v(x)在(0,2)上单调递减,这时v(x)(v(2),+);

v(x)在(2,+)上单调递增,这时v(x)(v(2),+).v(2)=4(e2).

v(2)是y=v(x)的极小值,也是最小值.(5分)

所以对曲线y=f(x)与曲线y=mx2(m0)公共点的个数,讨论如下:

当m4(e2)时,有0个公共点;

当m=4(e2)时,有1个公共点;

当m,+(e2)时有2个公共点;(8分)

(3)令F(x)=x2h(x),则F(x)=x2h(x)+2xh=x(ex)

所以h=x2(x),故h=x4(x)=x3(x)=x3(x)

令G(x)=ex-2F(x),则G(x)=ex-2F(x)=ex-2x(ex)=x(x-2)

显然,当02时,G(X)0,G(X)单调递减;

当x2时,G(x)0,G(x)单调递增;

所以,在(0,+)范围内,G(x)在x=2处取得最小值G(2)=0.

即x0时,ex-2F(x)0.

故在(0,+)内,h(x)0,

所以h(x)在(0,+)单调递增,

又因为h(2)=8(2)=8(e2)8(7),h(2)

所以h(e)8(7).(14分)

以上就是高二数学试题:2014年高二数学期末试题答案二的所有内容,希望对大家有所帮助!

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限