2015-12-28
收藏
教学目的
1.使学生掌握最简二次根式的定义,并会应用此定义判断一个根式是否为最简二次根式;
2.会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。
教学重点
最简二次根式的定义。
教学难点
一个二次根式化成最简二次根式的方法。
教学过程
一、复习引入
1.把下列各根式化简,并说出化简的根据:
2.引导学生观察考虑:
化简前后的根式,被开方数有什么不同?
化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。
3.启发学生回答:
二次根式,请同学们考虑一下被开方数符合什么条件的二次根式叫做最简二次根式?
二、讲解新课
1.总结学生回答的内容后,给出最简二次根式定义:
满足下列两个条件的二次根式叫做最简二次根式:
(1)被开方数的因数是整数,因式是整式;
(2)被开方数中不含能开得尽的因数或因式。
最简二次根式定义中第(1)条说明被开方数不含有分母;分母是1的例外。第(2)条说明被开方数中每个因式的指数小于2;特别注意被开方数应化为因式连乘积的形式。
2.练习:
下列各根式是否为最简二次根式,不是最简二次根式的说明原因:
3.例题:
例1 把下列各式化成最简二次根式:
例2 把下列各式化成最简二次根式:
4.总结
把二次根式化成最简二次根式的根据是什么?应用了什么方法?
当被开方数为整数或整式时,把被开方数进行因数或因式分解,根据积的算术平方根的性质,把开得尽方的因数或因式用它的算术平方根代替移到根号外面去。
当被开方数是分数或分式时,根据分式的基本性质和商的算术平方根的性质化去分母。
此方法是先根据分式的基本性质把被开方数的分母化成能开得尽方的因式,然后分子、分母再分别化简。
三、巩固练习
1.把下列各式化成最简二次根式:
2.判断下列各根式,哪些是最简二次根式?哪些不是最简二次根式?如果不是,把它化成最简二次根式。
四、小结
本节课学习了最简二次根式的定义及化简二次根式的方法。同学们掌握用最简二次根式的定义判断一个根式是否为最简二次根式,要根据积的算术平方根和商的算术平方根的性质把一个根式化成最简二次根式,特别注意当被开方数为多项式时要进行因式分解,被开方数为两个分数的和则要先通分,再化简。
五、布置作业
(1)把下列各式化成最简二次根式:
字).
小升初数学应用题水平测试题
有趣而精妙的数学游戏,数独的由来
读《数学家的故事》有感:换一种方式思考
不一般的女数学家:索菲·科瓦列夫斯卡娅
有助于培养数学思维的经典数学书籍推荐
精编高一下学期数学期末备考模拟试题
小升初数学毕业复习综合测试题2
小升初数学综合能力训练十三
数学界的一代天骄:丘成桐
陈省身:20世纪世界级的几何学家
中考倒计时:数学答题有技巧,时间分配有讲究
小升初数学毕业复习综合测试题5
高一下册数学期末备考知识点复习
约翰·冯·诺依曼:“我是一个数学家”
小升初数学毕业复习综合测试题8
小升初数学毕业复习综合测试题9
小升初数学百分数水平测试题
最出名的天才数学家:高斯
小升初数学毕业复习综合测试题7
陈景润:让人哭笑不得的专注力
12岁开始研究相对论的自闭症天才
算盘进化史:算盘的演化历史
小升初数学能力训练练习题5
苏步青:吃苦算什么,我甘心情愿
最新精编高二数学下学期期末备考知识点
小学生学奥数的意义所在:不只是为了小升初
小升初毕业班数学综合练习题
欧拉:牧羊童到数学家的华丽转身
小升初数学能力训练练习题1
小升初毕业班数学模拟试题
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |