2013-03-26
收藏
数列公式是高考数学中常考的内容,下面查字典高中数学网小编跟大家分享一些关于数列公式知识,希望能为同学们提供这方面知识的良好指导。
一、高中数列基本公式:
1、一般数列的通项an与前n项和Sn的关系:an=
2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。
3、等差数列的前n项和公式:Sn= Sn= Sn=
当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。
4、等比数列的通项公式: an= a1 qn-1an= ak qn-k
(其中a1为首项、ak为已知的第k项,an≠0)
5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);
当q≠1时,Sn= Sn=
二、高中数学中有关等差、等比数列的结论
1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等差数列。
2、等差数列{an}中,若m+n=p+q,则
3、等比数列{an}中,若m+n=p+q,则
4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等比数列。
5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
6、两个等比数列{an}与{bn}的积、商、倒数组成的数列
{an bn}、、仍为等比数列。
7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。
8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。
9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d
10、三个数成等比数列的设法:a/q,a,aq;
三、个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)
11、{an}为等差数列,则 (c>;0)是等比数列。
12、{bn}(bn>;0)是等比数列,则{logcbn} (c>;0且c1) 是等差数列。
13. 在等差数列中:
(1)若项数为,则
(2)若数为则,,
14. 在等比数列中:
(1) 若项数为,则
(2)若数为则,
一元一次方程的解法课件3
实数的运算课件1
一元一次不等式组课件2
一元一次不等式组课件1
有理数的乘法的运算律课件
有理数的加减法课件2
一元一次方程的解法课件1
有理数的加减混合运算课件1
实数的运算课件3
代数式课件4
代数式课件2
一元一次不等式组及其解法课件
代数式课件6
有理数的加法与减法课件7
整式的加减课件4
整式课件7
有理数的加减乘除混合运算课件
一元一次不等式的解法课件
有理数的加法与减法课件6
有理数的加减法课件4
实际问题与一元一次方程课件5
整式课件6
坐标方法的简单应用课件
几何图形课件3
有理数的减法法则课件
有理数的加减法课件3
同底数幂的除法课件1
代数式课件5
代数式课件3
整式的加减课件7
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |