2015-12-01
收藏
1.数列1,3,5,7,…,(2n-1)+,…的前n项和Sn的值等于()
A.n2+1- B.2n2-n+1-
C.n2+1- D.n2-n+1-
2.(2014福建厦门模拟)已知函数f(x)=x2+bx的图象在点A(1,f(1))处的切线的斜率为3,数列的前n项和为Sn,则S2 015的值为()
A. B. C. D.
3.(2014山东济南模拟)在数列{an}中,an+1+(-1)nan=2n-1,则数列{an}的前12项和等于()
A.76 B.78 C.80 D.82
4.已知等比数列{an}中,a1=3,a4=81,若数列{bn}满足bn=log3an,则数列的前n项和Sn=.
5.已知数列{an}的首项a1=3,通项an=2np+nq(nN*,p,q为常数),且a1,a4,a5成等差数列.求:
(1)p,q的值;
(2)数列{an}的前n项和Sn的公式.
6.(2014广东惠州调研)已知向量p=(an,2n),向量q=(2n+1,-an+1),nN*,向量p与q垂直,且a1=1.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=log2an+1,求数列{an·bn}的前n项和Sn.
7.在数列{an}中,a1=1,当n≥2时,其前n项和Sn满足=an.
(1)求Sn的表达式;
(2)设bn=,求数列{bn}的前n项和Tn.
8.(2014山东,文19)在等差数列{an}中,已知公差d=2,a2是a1与a4的等比中项.
(1)求数列{an}的通项公式;
(2)设bn=,记Tn=-b1+b2-b3+b4-…+(-1)nbn,求Tn.
参考答案
1.A解析:该数列的通项公式为an=(2n-1)+,
则Sn=[1+3+5+…+(2n-1)]+
=n2+1-.
2.D解析:由已知得f'(x)=2x+b,f'(1)=2+b=3,解得b=1,
所以f(x)=x2+x,,
所以S2 015=+…+=1-+…+=1-.
3.B解析:由已知an+1+(-1)nan=2n-1,得an+2+(-1)n+1an+1=2n+1,得an+2+an=(-1)n(2n-1)+(2n+1),取n=1,5,9及n=2,6,10,结果相加可得S12=a1+a2+a3+a4+…+a11+a12=78.故选B.
4.解析:设等比数列{an}的公比为q,
则=q3=27,解得q=3.
所以an=a1qn-1=3×3n-1=3n,
故bn=log3an=n,
所以,
则数列的前n项和为1-+…+=1-.
5.解:(1)由a1=3,得2p+q=3.
又因为a4=24p+4q,a5=25p+5q,且a1+a5=2a4,
得3+25p+5q=25p+8q,解得p=1,q=1.
(2)由(1)知,an=2n+n,
所以Sn=(2+22+…+2n)+(1+2+…+n)=2n+1-2+.
6.解:(1)∵向量p与q垂直,
2n+1an-2nan+1=0,即2nan+1=2n+1an.
=2.
∴{an}是以1为首项,2为公比的等比数列.
an=2n-1.
(2)∵bn=log2an+1=n-1+1=n,
∴an·bn=n·2n-1.
∴Sn=1+2×2+3×22+4×23+…+n·2n-1.①
∴2Sn=1×2+2×22+3×23+…+(n-1)·2n-1+n·2n.②
①-②得,-Sn=1+2+22+23+24+…+2n-1-n·2n=-n·2n=(1-n)·2n-1,
Sn=1+(n-1)·2n.
7.解:(1)=an,
an=Sn-Sn-1(n≥2),
∴=(Sn-Sn-1),
即2Sn-1Sn=Sn-1-Sn.①
由题意得Sn-1·Sn≠0,
①式两边同除以Sn-1·Sn,
得=2,
数列是首项为=1,公差为2的等差数列.
=1+2(n-1)=2n-1,
∴Sn=.
(2)∵bn=,
∴Tn=b1+b2+…+bn
=+…+
=.
8.解:(1)由题意知(a1+d)2=a1(a1+3d),
即(a1+2)2=a1(a1+6),
解得a1=2,
所以数列{an}的通项公式为an=2n.
(2)由题意知bn==n(n+1),
所以Tn=-1×2+2×3-3×4+…+(-1)nn·(n+1).
因为bn+1-bn=2(n+1),
可得当项数为偶数时,
Tn=(-b1+b2)+(-b3+b4)+…+(-bn-1+bn)=4+8+12+…+2n=,
当项数为奇数时,Tn=Tn-1+(-bn)=-n(n+1)=-.
所以Tn=
数列求和考点习题和答案的全部内容就是这些,希望考生可以通过试题查缺补漏。
人教版小学六年级数学圆锥的体积10
人教版小学六年级数学圆柱的形成3
人教版小学六年级数学圆锥体的认识2
人教版小学六年级数学圆的面积19
人教版小学六年级数学圆的面积18
人教版小学六年级数学成反比例的量1
人教版小学六年级数学成反比例的量2
人教版小学六年级数学复合应用题2
人教版小学六年级数学圆锥的体积1
人教版小学六年级数学圆锥体体积6
人教版小学六年级数学圆的面积12
人教版小学六年级数学圆锥的体积3
人教版小学六年级数学成反比例的量5
人教版小学六年级数学扇形统计图
人教版小学六年级数学圆锥的体积2
人教版小学六年级数学成正比例的量2
人教版小学六年级数学成正比例的量1
人教版小学六年级数学圆的面积20
人教版小学六年级数学圆的面积11
人教版小学六年级数学圆锥的体积6
人教版小学六年级数学圆锥的体积8
人教版小学六年级数学圆的面积17
人教版小学六年级数学圆锥体体积2
人教版小学六年级数学圆的面积15
人教版小学六年级数学圆锥的体积4
人教版小学六年级数学圆锥体体积4
人教版小学六年级数学圆的面积16
人教版小学六年级数学圆面积计算
人教版小学六年级数学成正比例的量3
人教版小学六年级数学圆锥的特征和体积
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |