2015-11-27
收藏
学习数学可以让我们的思维更清晰,我们在思考和解决问题的时候,条理更清楚。小编准备了基本不等式专项练习,希望你喜欢。
1.若xy0,则对 xy+yx说法正确的是()
A.有最大值-2 B.有最小值2
C.无最大值和最小值 D.无法确定
答案:B
2.设x,y满足x+y=40且x,y都是正整数,则xy的最大值是()
A.400 B.100
C.40 D.20
答案:A
3.已知x2,则当x=____时,x+4x有最小值____.
答案:2 4
4.已知f(x)=12x+4x.
(1)当x0时,求f(x)的最小值;
(2)当x0 时,求f(x)的最大值.
解:(1)∵x0,12x,4x0.
12x+4x212x4x=83.
当且仅当12x=4x,即x=3时取最小值83,
当x0时,f(x)的最小值为83.
(2)∵x0,-x0.
则-f(x)=12-x+(-4x)212-x-4x=83,
当且仅当12-x=-4x时,即x=-3时取等号.
当x0时,f(x)的最大值为-83.
一、选择题
1.下列各式,能用基本不等式直接求得最值的是()
A.x+12x B.x2-1+1x2-1
C.2x+2-x D.x(1-x)
答案:C
2.函数y=3x2+6x2+1的最小值是()
A.32-3 B.-3
C.62 D.62-3
解析:选D.y=3(x2+2x2+1)=3(x2+1+2x2+1-1)3(22-1)=62-3.
3.已知m、nR,mn=100,则m2+n2的最小值是()
A.200 B.100
C.50 D.20
解析:选A.m2+n22mn=200,当且仅当m=n时等号成立.
4.给出下面四个推导过程:
①∵a,b(0,+),ba+ab2ba
②∵x,y(0,+),lgx+lgy2lgx
③∵aR,a0,4a+a 24a
④∵x,yR,,xy0,xy+yx=-[(-xy)+(-yx)]-2-xy-yx=-2.
其中正确的推导过程为()
A.①② B.②③
C.③④ D.①④
解析:选D.从基本不等式成立的条件考虑.
①∵a,b(0,+),ba,ab(0,+),符合基本不等式的条件,故①的推导过程正确;
②虽然x,y(0,+),但当x(0,1)时,lgx是负数,y(0,1)时,lgy是负数,②的推导过程是错误的;
③∵aR,不符合基本不等式的条件,
4a+a24aa=4是错误的;
④由xy0得xy,yx均为负数,但在推导过程中将全体xy+yx提出负号后,(-xy)均变为正数,符合基本不等式的条件,故④正确.
5.已知a0,b0,则1a+1b+2ab的最小值是()
A.2 B.22
C.4 D.5
解析:选C.∵1a+1b+2ab2ab+2ab222=4.当且仅当a=bab=1时,等号成立,即a=b=1时,不等式取得最小值4.
6.已知x、y均为正数,xy=8x+2y,则xy有()
A.最大值64 B.最大值164
C.最小值64 D.最小值164
解析:选C.∵x、y均为正数,
xy=8x+2y28x2y=8xy,
当且仅当8x=2y时等号成立.
xy64.
二、填空题
7.函数y=x+1x+1(x0)的最小值为________.
答案:1
8.若x0,y0,且x+4y=1,则xy有最________值,其值为________.
解析:1=x+4y4y=4xy,xy116.
答案:大 116
9.(2010年高考山东卷)已知x,yR+,且满足x3+y4=1,则xy的最大值为________.
解析:∵x0,y0且1=x3+y42xy12,xy3.
当且仅当x3=y4时取等号.
答案:3
三、解答题
10.(1)设x-1,求函数y=x+4x+1+6的最小值;
(2)求函数y=x2+8x-1(x1)的最值.
解:(1)∵x-1,x+10.
y=x+4x+1+6=x+1+4x+1+5
2 x+14x+1+5=9,
当且仅当x+1=4x+1,即x=1时,取等号.
x=1时,函数的最小值是9.
(2)y=x2+8x-1=x2-1+9x-1=(x+1)+9x-1
=(x-1)+9x-1+2.∵x1,x-10.
(x-1)+9x-1+22x-19x-1+2=8.
当且仅当x-1=9x-1,即x=4时等号成立,
y有最小值8.
11.已知a,b,c(0,+),且a+b+c=1,求证:(1a-1)(1b-1)(1c-1)8.
证明:∵a,b,c(0,+),a+b+c=1,
1a-1=1-aa=b+ca=ba+ca2bca,
同理1b-12acb,1c-12abc,
以上三个不等式两边分别相乘得
(1a-1)(1b-1)(1c-1)8.
当且仅当a=b=c时取等号.
12.某造纸厂拟建一座平面图形为矩形且面积为200平方米的二级污水处理池,池的深度一定,池的外圈周壁建造单价为每米400元,中间一条隔壁建造单价为每米100元,池底建造单价每平方米60元(池壁忽略不计).
问:污水处理池的长设计为多少米时可使总价最低.
解:设污水处理池的长为x米,则宽为200x米.
总造价f(x)=400(2x+2200x)+100200x+60200
=800(x+225x)+12000
1600x225x+12000
=36000(元)
当且仅当x=225x(x0),
即x=15时等号成立.
基本不等式专项练习就为大家介绍到这里,希望对你有所帮助。
人教实验版七年级下册余角与补角课件
人教版八年级数学上册期末总复习课件(共92张PPT)
13.2作轴对称图形课件(共14张PPT)
角人教版
人教实验版七年级下册5.4.2平移(2)课件
课件新人教版七下§三角形的三边的关系(2)
人教实验版七年级下册5.2.1平行线课件PPT
课件新人教版七下§7.3.2多边形内角和ppt
人教实验版七下7.1.2三角形的高、中线、角平分线
函数及图象人教版七年级数学
课件新人教版七下§6.2.2用坐标表示平移
定理与证明人教版七年级数学
人教版八年级数学上册期末总复习课件(共150张PPT)
单项式的乘法人教版七年级数学
人教实验版七年级下册5.1.2垂线课件两课时
人教实验版七年级下册第五章平行线的特征课件(无点)
角的画法人教版七年级数学
11.1.2三角形的高、中线与角平分线课件(共22张PPT)
课件新人教版七下§三角形的外角(2)
14.1整式的乘法—多项式乘以多项式课件(共9张PPT)
13.3等腰三角形课件(共2课时)
归一应用题人教版七年级数学
人教实验版七年级下册5.3平行线的性质课件
空间里的平行关系人教版七年级数学
课件新人教版七下§7.3探索多边形的内角和
14.2《乘法公式》课件(共25张PPT)
人教实验版七年级下册7.2.2三角形的外角课件
12.2三角形全等的判定课件(3份)
课件新人教版§通用平行线的证明强化训练
多项式的乘法人教版七年级数学
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |