2015-11-18
收藏
中考是九年义务教育的终端显示与成果展示,中考是一次选拔性考试。为了更有效地帮助学生梳理学过的知识,提高复习质量和效率,在中考中取得理想的成绩,下文为大家准备了2016年中考数学备考专项练习。
一、选择题
1. (2014上海,第6题4分)如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是()
A. △ABD与△ABC的周长相等
B. △ABD与△ABC的面积相等
C. 菱形的周长等于两条对角线之和的两倍
D. 菱形的面积等于两条对角线之积的两倍
考点: 菱形的性质.
分析: 分别利用菱形的性质结合各选项进而求出即可.
解答: 解:A、∵四边形ABCD是菱形,
AB=BC=AD,
∵AC
△ABD与△ABC的周长不相等,故此选项错误;
B、∵S△ABD=S平行四边形ABCD,S△ABC=S平行四边形ABCD,
△ABD与△ABC的面积相等,故此选项正确;
C、菱形的周长与两条对角线之和不存在固定的数量关系,故此选项错误;
D、菱形的面积等于两条对角线之积的,故此选项错误;
2. (2014山东枣庄,第7题3分)如图,菱形ABCD的边长为4,过点A、C作对角线AC的垂线,分别交CB和AD的延长线于点E、F,AE=3,则四边形AECF的周长为( )
A. 22 B. 18 C. 14 D. 11
考点: 菱形的性质
分析: 根据菱形的对角线平分一组对角可得BAC=BCA,再根据等角的余角相等求出BAE=E,根据等角对等边可得BE=AB,然后求出EC,同理可得AF,然后判断出四边形AECF是平行四边形,再根据周长的定义列式计算即可得解.
解答: 解:在菱形ABCD中,BAC=BCA,
∵AEAC,
BAC+BAE=BCA+E=90,
BAE=E,
BE=AB=4,
EC=BE+BC=4+4=8,
同理可得AF=8,
∵AD∥BC,
四边形AECF是平行四边形,
3. (2014山东烟台,第6题3分)如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若DAC=28,则OBC的度数为()
A. 28 B. 52 C. 62 D. 72
考点:菱形的性质,全等三角形.
分析:根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BOAC,继而可求得OBC的度数.
解答:∵四边形ABCD为菱形,AB∥CD,AB=BC,
MAO=NCO,AMO=CNO,
在△AMO和△CNO中,∵ ,△AMO≌△CNO(ASA),
AO=CO,∵AB=BC,BOAC,BOC=90,∵DAC=28,
4.(2014山东聊城,第9题,3分)如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BEDF是菱形,且EF=AE+FC,则边BC的长为()
A. 2 B. 3 C. 6 D.
考点: 矩形的性质;菱形的性质.
分析: 根据矩形的性质和菱形的性质得ABE=EBD=DBC=30,AB=BO=3,因为四边形BEDF是菱形,所以BE,AE可求出进而可求出BC的长.
解答: 解:∵四边形ABCD是矩形,
A=90,
即BABF,
∵四边形BEDF是菱形,
EFBD,EBO=DBF,
AB=BO=3,ABE=EBO,
ABE=EBD=DBC=30,
BE= =2 ,
BF=BE=2 ,
∵EF=AE+FC,AE=CF,EO=FO
5. (2014浙江杭州,第5题,3分)下列命题中,正确的是()
A. 梯形的对角线相等 B. 菱形的对角线不相等
C. 矩形的对角线不能相互垂直 D. 平行四边形的对角线可以互相垂直
考点: 命题与定理.
专题: 常规题型.
分析: 根据等腰梯形的判定与性质对A进行判断;根据菱形的性质对B进行判断;根据矩形的性质对C进行判断;根据平行四边形的性质对D进行判断.
解答: 解:A、等腰梯形的对角线相等,所以A选项错误;
B、菱形的对角线不一定相等,若相等,则菱形变为正方形,所以B选项错误;
C、矩形的对角线不一定相互垂直,若互相垂直,则矩形变为正方形,所以C选项错误;
D、平行四边形的对角线可以互相垂直,此时平行四边形变为菱形,所以D选项正确.
6.(2014年贵州黔东南10.(4分))如图,在矩形ABCD中,AB=8,BC=16,将矩形ABCD沿EF折叠,使点C与点A重合,则折痕EF的长为()
A. 6 B. 12 C. 2 D. 4
考点: 翻折变换(折叠问题).
分析: 设BE=x,表示出CE=16﹣x,根据翻折的性质可得AE=CE,然后在Rt△ABE中,利用勾股定理列出方程求出x,再根据翻折的性质可得AEF=CEF,根据两直线平行,内错角相等可得AFE=CEF,然后求出AEF=AFE,根据等角对等边可得AE=AF,过点E作EHAD于H,可得四边形ABEH是矩形,根据矩形的性质求出EH、AH,然后求出FH,再利用勾股定理列式计算即可得解.
解答: 解:设BE=x,则CE=BC﹣BE=16﹣x,
∵沿EF翻折后点C与点A重合,
AE=CE=16﹣x,
在Rt△ABE中,AB2+BE2=AE2,
即82+x2=(16﹣x)2,
解得x=6,
AE=16﹣6=10,
由翻折的性质得,AEF=CEF,
∵矩形ABCD的对边AD∥BC,
AFE=CEF,
AEF=AFE,
AE=AF=10,
过点E作EHAD于H,则四边形ABEH是矩形,
EH=AB=8,
AH=BE=6,
FH=AF﹣AH=10﹣6=4,
7.(2014遵义9.(3分))如图,边长为2的正方形ABCD中,P是CD的中点,连接AP并延长交BC的延长线于点F,作△CPF的外接圆⊙O,连接BP并延长交⊙O于点E,连接EF,则EF的长为()
A. B. C. D.
考点: 相似三角形的判定与性质;正方形的性质;圆周角定理
分析: 先求出CP、BF长,根据勾股定理求出BP,根据相似得出比例式,即可求出答案.
解答: 解:∵四边形ABCD是正方形,
ABC=PCF=90,CD∥AB,
∵F为CD的中点,CD=AB=BC=2,
CP=1,
∵PC∥AB,
△FCP∽△FBA,
= =,
BF=4,
CF=4﹣2=2,
由勾股定理得:BP= = ,
∵四边形ABCD是正方形,
BCP=PCF=90,
PF是直径,
E=90BCP,
∵PBC=EBF,
△BCP∽△BEF,
8.(2014十堰9.(3分))如图,在四边形ABCD中,AD∥BC,DEBC,垂足为点E,连接AC交DE于点F,点G为AF的中点,ACD=2ACB.若DG=3,EC=1,则DE的长为()
A. 2 B. C. 2 D.
考点: 勾股定理;等腰三角形的判定与性质;直角三角形斜边上的中线.
分析: 根据直角三角形斜边上的中线的性质可得DG=AG,根据等腰三角形的性质可得GAD=GDA,根据三角形外角的性质可得CGD=2GAD,再根据平行线的性质和等量关系可得ACD=CGD,根据等腰三角形的性质可得CD=DG,再根据勾股定理即可求解.
解答: 解:∵AD∥BC,DEBC,
DEAD,CAD=ACB
∵点G为AF的中点,
DG=AG,
GAD=GDA,
CGD=2CAD,
∵ACD=2ACB,
ACD=CGD,
希望为大家提供的2016年中考数学备考专项练习的内容,能够对大家有用,更多相关内容,请及时关注!
从三个方向看(1)课件ppt苏科版七年级上
1.2活动思考课件ppt盐城市毓龙路实验学校七年级上
靖江外国语学校九年级数学双休日作业(4.17)
5.2图形的变化课件ppt太仓市第二中学七年级上
5.4从三个方向看(2)课件ppt苏科版七年级上
一元一次方程复习(1)课件ppt沭阳如东实验学校七年级上
线段、射线、直线(2)课件ppt无锡市雪浪中学七年级上
靖江外国语学校九年级数学双休日作业(5.21)
苏科版七年级上《从三个方向看》课件3
靖江外国语学校九年级数学双休日作业(2.26)
九年级数学国庆假日作业(一)
苏科版七年级上6.3余角、补角、对顶角(2)课件和学案
靖江外国语学校九年级数学双休日作业(5.07)
2.3数轴课件ppt新苏科版七年级上
《图形的展开和折叠》课件ppt灌云县沂北中学七年级上
江苏省淮阴中学七年级上《图形的变化》课件ppt
2.3数轴(2)课件ppt毓龙路实验学校七年级上
第四章一元一次方程复习精品课件ppt苏科版七年级上
苏科版七年级上《从三个方向看》课件4
5.4从三个方向看(第2课时)课件ppt苏科版七年级上
2.2有理数与无理数课件ppt苏科版七年级上
2.1正数与负数课件ppt苏科版七年级上
苏科版七年级上5.4从三个方向看第二课时课件ppt
苏科版七年级上《丰富的图形世界》复习课课件ppt
九年级数学寒假补充作业(1)
句容市第二中学七年级上5.1丰富的图形世界(1)课件ppt
2.4绝对值与相反数(1)课件ppt毓龙路实验学校七年级上
5.1丰富的图形世界课件ppt太仓市第二中学七年级上
太仓市第二中学七年级上5.1丰富的图形世界(第2课时)课件
2.1正数与负数课件ppt苏州市振华中学校七年级上
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |