2015-11-12
收藏
有理数可分为整数和分数。英文:rational number读音:yǒu lǐ sh整数和分数统称为有理数,任何一个有理数都可以写成分数m/n(m,n都是整数,且n0)的形式。任何一个有理数都可以在数轴上表示。其中包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。这一定义在数的十进制和其他进位制(如二进制)下都适用。数学上,有理数是一个整数 a 和一个非零整数 b 的比(ratio),通常写作 a/b,故又称作分数。希腊文称为 ,原意为成比例的数(rational number),但中文翻译不恰当,逐渐变成有道理的数。 无限不循环小数称之为无理数(例如:圆周率)有理数和无理数统称为实数。所有有理数的集合表示为Q。以下都是有理数:
(1) 整数包含了:正整数、0、负整数统称为整数。
(2)分数包含了:正分数、负分数统称为分数。
(3)小数包含了:有限小数、无限循环小数。而且分数也统称小数,因为分小互化。
如3,-98.11,5.72727272,7/22都是有理数。全体有理数构成一个集合,即有理数集合,用粗体字母Q表示,较现代的一些数学书则用空心字母Q表示。有理数集是实数集的子集,即Q?R。相关的内容见数系的扩张。有理数集是一个域,即在其中可进行四则运算(0作除数除外),而且对于这些运算,以下的运算律成立(a、b、c等都表示任意的有理数):①加法的交换律 a+b=b+a;②加法的结合律a+(b+c)=(a+b)+c;③存在数0,使 0+a=a+0=a;④乘法的交换律 ab=ba;⑤乘法的结合律 a(bc)=(ab)c;⑥乘法的分配律 a(b+c)=ab+ac。0a=0 文字解释:一个数乘0还等于0。此外,有理数是一个序域,即在其上存在一个次序关系。0的绝对值还是0.有理数还是一个阿基米德域,即对有理数a和b,a0,b0,必可找到一个自然数n,使nba。由此不难推知,不存在最大的有理数。值得一提的是有理数的名称。有理数这一名称不免叫人费解,有理数并不比别的数更有道理。事实上,这似乎是一个翻译上的失误。有理数一词是从西方传来,在英语中是(rational number),而(rational)通常的意义是理性的。中国在近代翻译西方科学著作,依据日语中的翻译方法,以讹传讹,把它译成了有理数。但是,这个词来源于古希腊,其英文词根为(ratio),就是比率的意思(这里的词根是英语中的,希腊语意义与之相同)。所以这个词的意义也很显豁,就是整数的比。与之相对,而无理数就是不能精确表示为两个整数之比的数,而并非没有道理(无理数就是无限不循环小数,也是其中一个无理数)。
整式的运算综合测试题(含答案)
有理数复习摸底测试题
初一数学去括号同步练习
平面图形的认识练习题
初一数学整式测试题
浙教北师版一年级数学——《物体分类》教学设计
有理数的由来
人教版七年级数学上册一元一次方程训练(二)
初一数学《图形的旋转与平移》测试题及答案
有理数的相关概念
第二章 平行线与相交线知识点汇总
走进代数综合测试题及答案
初二数数学第二学期期末复习
人教版初一数学第一章《有理数》课后习题答案
初一数学:探索多边形的内角和与外角和练习及答案
初一数学上册期中检测试题
人教版七年级数学上册一元一次方程训练(一)
第一章 整式的运算知识点汇总
初一数学:一元一次不等式组练习题(2)
有理数的定义
运用公式法同步练习
初一数学《梯形》同步练习题及答案
平行四边形的判定同步练习及答案
初一数学有理数的加法测试题(含答案)
第三章 生活中的数据知识点
有理数小练习
平面图形的全等变换练习题
初一数学有理数的运算测试题
初一数学:用字母表示数单元测试题及答案
初一数学有理数练习
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |