分式方程的解法教案_教学设计 - 查字典数学网
数学分式方程的解法教案
首页>数学教研>教学设计>分式方程的解法教案

分式方程的解法教案

2015-11-10 收藏

教学目标:

1、经历探索分式方程解法的过程,会解可化为一元一次方程的分式方程(方程中分式不超过两个),会检验根的合理性,明确可化为一元一次方程的分式方程与一元一次方程的联系与区别。

2、通过探究,领会“类比”和“转化”这两种重要的数学思想,培养思维的严密性和条理性。

3、通过小组合作探究,增强团队意识,感受成果共享受愉快。

教学重、难点:

分式方程如何转化为一元一次方程来求解和验根。

课前准备:

分组准备:

1、回顾什么是最简公分母?

2、解一元一次方程的一般步骤,解方程:2(X-1)/3=5/6

3、分式方程的概念

4、分式的基本性质,等式的基本性质

板书设计:

4.解方程

1、解一元一次方程2(X-1)/3=5/6

2、你能设法求出下面分式方程的解吗?9000/X=15000/(X+3000)试一试

3、例1……

4、例2……

5、解分式方程的一般步骤

教学过程设计:

活动1 提出问题,激发兴趣

1、教师出示问题:

你还记得怎样解一元一次方程吗?试一试。2(X-1)/3=5/6

2、指名解题,师生点评,共同回忆解一元一次方程的步骤及每一步的方法和依据。

3、教师出示上一节课中所列的分式方程9000/X=15000/(X+3000),并提出问题:

这是我们上节课所列的方程,有什么特点?你能解吗?试一试(复习分式方程的概念)

从而导出新课,板书课题。

活动2 合作探究,解决问题

1、学生分小组尝试解上面的方程,并了解学生解题情况,看有无学生发现先将分式方程转化为整式方程,再求解,若有则因势利导,若无,则通过后面的例题慢慢渗透。同时肯定利用比例的知识解题的方法。

2、教师出示例1

前面我们每位同学都尝试了解分式方程,有的同学很有办法,将它解出来,并且有理有据,但也有的同学一时还解不出来,下面让我们一起再来探讨如何解分式方程。

3、教师引导学生解方程,注意分式方程如何转化为一元一次方程,渗透转化思想,注意展示解题的步骤和格式,注意告诉学生检验转化后方程的解是不是原分式的解。

4、教师出示例2,并指名上讲台演练

学生自主练习,看看自己能不能解分式方程,并把过程简要地写下来。

5、师生共同点评。

6、教师出示“议一议”内容,要求学生分小组讨论,首先小亮的解题过程有没有不对的地方?如果没有,你认为X=2是原方程的根吗?

通过学生的讨论,补充,教师告诉学生“增根”这一概念,并简要介绍产生增根的原因。(X=2不是原方程的根,因为它使得原分式方程的分母为零,我们称它为原方程的增根,产生增根的原因是,我们在方程的两边同乘了一个可能使分母为零的整式)从而要求学生解分式方程时必须验根,同时探讨检验的方法。

活动3 小结归纳,巩固提高

1、通过本节课的学习,请你想一想解分式方程一般需要经过哪几个步骤?

2、完成“随堂练习”:(1)3/(X-1)=4/X;(2)X/(2X-3)+5/(3-2X)=4(及时点评,纠错)

活动4 师生互动,疑难探讨

1、学生把在学习中的疑难问题提出来,师生共同探讨。

2、在解分式方程的过程中,我们应注意些什么问题?

活动5 目标小结,提高能力

1、指名谈谈本节课有什么收获。

2、布置作业:P82第1题练习本上,第2、3题小组讨论后完成在草稿本上。

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限