2015-11-10
收藏
第二十四章 证明与命题(一)复习
一、教学目标:
1、了解定义、命题、定理的含义,会区分命题的条件(题设)和结论。
2、会在简单情况下判断一个命题的真假。理解反例的作用,知道利用反例可证明一个命题是错误的。
3 、了解证明的 含义,理解证明的必要性,体会证明的过程要步步有据。
4、会根据一些基本事实证明简单命题。
5、通过实例,体会反证法的含义。了解反证法的基本步骤。
6、初步会综合运用命题、证明以及相关知识解决简单的实际问题。
二、本章知识结构框架图:
三、教 学过程:
(一)知识回顾
1、一 般地,对某一件事情作出正确或不正确的判断的句子叫做命题。
命题分为真命题与假命题。
2、说明一个命题是假命题,通常只用找出一个反例,但要说明一个命题是真命题,就必须用推理的方法,而不能光凭一个例子。
(二)说一说
1.指出下列句子,哪些是命题, 哪些不是命题?
(1)有两个角和夹边对应相等的三角形是全等的三角形;
(2)有两条边对应相等的两个三角形全等;
(3)作A的平分线;
(4)若a=b 则 a2= b2
(5) 同位角相等 吗?
2.说出一个已学过 定理:
说出一个已学过公理:
3、下列把命题改写成如果,那么的形式。并判断下列命题的真假.
(1)不相等的角不可能是对顶角.
(2)垂直于同一条直线的两直线平行;
(3)两个无理数的乘积一定是无理数.
(三)练一练
1. 用反例证明下列命题是假命题:
(1) 若x(5-x)=0,则x=0;
(2) 等腰三角形一边上的中线就是这条边上的高;
(3) 相等的角是内错角;
(4)若x2,则分式 有意义.
(四)例题分析
例1求证:全等三角形对应角的平分线相等.
证明命题的一般步骤:
(1)根据题意,画出图形;
(2)用符号语言写出已 知和求证
(3)分析证明思路;
(4) 写出证明过程;
例2已知:如图,△ABC中,C=2B ,BAD=DAC.
求 证:AB=AC+CD
还有其他方法吗?
A A
E
B D C B D C
(第三题) (第二题)
例3已知 :如图D,E分别是BC,AB上的一点,BC、BD的长度之比为3:1, △ECD的面积是△ABC的面积的一半.
求证: BE=3AE[来源:学|科|网]
例4、已知:如图,直线AB,CD,EF在同一平面内,且AB ∥ EF,CD ∥ EF,[来源:学科网]
求证:AB ∥ CD。
证明:假设AB∥CD,那么AB与CD一定相交于一点P
∵AB ∥ EF,CD ∥ EF(已知)
过点P有两条直线AB, CD都与直线EF平行。
这与经过直线外一点,有一条而且只有一条直线和这条直线平行矛盾。[来源:学科网]
AB ∥ CD不能成立。
AB ∥ CD
反证法的一般步骤:[来源:学科网]
1.反设(否定结论);
2.归谬(利用已知条件和反设,进行推理,得出与已学过的公理、定理、定义或与已知条件矛盾);
3.写出结论(肯定原命题成立)。
练习:
如图,已知:AB=AE,BC=DE, B= E,
AFCD于F.
求证:CF=DF.
(五)小结:
(六)作业布置:练习一份
100以内的加减法(二)练习课一则
解决问题实践环节
人教版小学数学一年级下册优秀教案读数写数2012
1―5的认识和加减法教材分析
第二单元20以内的退位减法
数一数精品教案设计
人教版2013-2014小学二年级上册《角的初步认识》教学设计
第九单元统计教学设计
比大小好教案设计推荐
100以内的加法和减法(二)习题
整理和复习100以内加减等知识
100以内的加法和减法(二)练习题型
100以内的加法和减法(二)——两位数加两位数的进位加
用数学-教学教案
两位数减两位数退位减法数学二上教案
100以内的加法和减法(二)——连加、连减
第六单元整十数加、减整十数(第一课时)
100以内的加法和减法(二)——用数学
第二课时图形的拼组
认识物体和图形课程分析及教案教学设计名师推荐
《左、右》教案设计
实践活动:我长高了
人民币的简单计算教学设计
小学数学下册《摆一摆、想一想》一年级教案教学设计
长方体正方体圆柱体球教案教学设计顶
十几减8教案设计
小学二年级数学上册《数学广角——搭配》教学设计实录
人教版一年级下册第一单元《认识图形二》优秀教案(共3个课时完整)
用数学巩固练习课
整理和复习
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |