命题_教学设计 - 查字典数学网
数学命题
首页>数学教研>教学设计>命题

命题

2015-11-05 收藏

教学建议

(一)教材分析

1、知识结构

2、重点、难点分析

重点:找出命题的题设和结论.因为找出一个命题的题设和结论,是对该命题深刻理解的前提,而对命题理解能力是我们今后研究数学必备的能力,也是研究其它学科能力的基础.

难点:找出一个命题的题设和结论.因为理解和掌握一个命题,一定要分清它的题设和结论,所以找出一个命题的题设和结论是十分重要的问题.但有些命题的题设和结论不明显.例如,对顶角相等,等角的余角相等等.一些没有写成如果那么形式的命题,学生往往搞不清哪是题设,哪是结论,又没有一个通用的方法可以套用,所以分清题设和结论是教学的一个难点.

(二) 教学建议

1、教师在教学过程中,组织或引导学生从具体到抽象,结合学生熟悉的事例,来理解命题的概念、找出一个命题的题设和结论,并能判断一些简单命题的真假.

2、命题是数学中一个非常重要的概念,虽然高中阶段我们还要学习,但对于程度好的A层学生还要理解:

(1)假命题可分为两类情况:

①题设只有一种情形,并且结论是错误的,例如,1+3=7就是一个错误的命题.

②题设有多种情形,其中至少有一种情形的结论是错误的.例如,内错角互补,两直线平行这个命题的题设可分为两种情形:第一种情形是两个内错角都等于90,这时两直线平行;第二种情形是两个内错角不都等于90,这时两直线不平行.整体说来,这是错误的命题.

(2)是否是命题:

命题的定义包括两层涵义:①命题必须是一个完整的句子;②这个句子必须对某件事情做出肯定或者否定的判断.即命题是判断某一件事情的句子.在语法上,这样的句子叫做陈述句,它由题设+结论构成.

另外也有一些句子不是陈述句,例如,祈使句(也叫做命令句)过直线AB外一点作该直线的平行线.疑问句A是否等于B?感叹句竟然得到59的结果!以上三个句子都不是命题.

(3)命题的组成

每个命题都是由题设、结论两部分组成.题设是已知事项;结论是由已知事项推出的事项.命题常写成如果,那么的形式.具有这种形式的命题中,用如果开始的部分是题设,用那么开始的部分是结论.

有些命题,没有写成如果,那么的形式,题设和结论不明显.对于这样的命题,要经过分折才能找出题设和结论,也可以将它们改写成如果那么的形式.

另外命题的题设(条件)部分,有时也可用已知或者若等形式表述;命题的结论部分,有时也可用求证或则等形式表述.

教学设计示例1

教学目标

1.使学生对命题、真命题、假命题等概念有所理解.

2.使学生理解几何命题的组成,能够区分命题的题设和结论两部分,并能将命题改写成如果,那么的形式.

3.会判断一些命题的真假.

教学重点和难点

本节的重点和难点是:找出一个命题的题设和结论.

教学过程设计

一、分析语句,理解命题

1.教师让学生随意说一句完整的话,每个小组可以派一名同学说,如:

(1)我是中国人.

(2)我家住在北京.

(3)你吃饭了吗?

(4)两条直线平行,内错角相等.

(5)画一个45的角.

(6)平角与周角一定不相等.

2.找出哪些是判断某一件事情的句子?

学生答:(1),(2),(4),(6).

3.教师给出命题的概念,并举例.

命题:判断一件事情的句子,叫做命题,分析(3),(5)为什么不是命题.

教师分析以上命题中,每句话都判断什么事情.所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清.在数学课中,只研究数学命题,请学生举几个数学命题的例子,每组再选一个同学说.(不要让说过的再说)

如:

(1)对顶角相等.

(2)等角的余角相等.

(3)一条射线把一个角分成两个相等的角,这条射线一定是这个角的平分线.

(4)如果 a0,b0,那么a+b0.

(5)当a0时,|a|=a.

(6)小于直角的角一定是锐角.

在学生举例的基础上,教师有意说出以下两个例子,并问这是不是命题.

(7)a0,b0,a+b=0.

(8)2与3的和是4.

有些学生可能给与否定,这时教师再与学生共同回忆命题的定义,加以肯定,先不要给出假命题的概念,而是从判断的角度来加深对命题这一概念的理解.

4.分析命题的构成,改写命题的形式.

例 两条直线平行,同位角相等.

(l)分析此命题的构成,前一部分是后一部分成立的条件,后一部分是在前一部分条件下所得的结论.已知事项为题设,由已知推出的事项为结论.

(2)改写命题的形式.

由于题设是条件,可以写成如果的形式,结论写成那么的形式,所以上述命题可以改写成如果两条平行线被第三条直线所截,那么同位角相等.

请同学们将下列命题写成如果,那么的形式,例:

①对顶角相等.

如果两个角是对顶角,那么它们相等.

②两条直线平行,内错角相等.

如果两条直线平行,那么内错角相等.

③等角的补角相等.

如果两个角是等角,那么它们的补角相等.(注意不仅仅限于两个角,如果多个角相等,它们的补角也相等.)

以上三个命题的改写由学生进行,对(2)要更改为如果两条平行线被第三条直线所截,那么内错角相等.

提示学生注意:题设的条件要全面、准确.如果条件不止一个时,要一一列出.

如:两条直线相交,有一个角是直角,则这两条直线互相垂直,可改写为:

如果两条直线相交,而且有一个角是直角,那么这两条直线互相垂直.

二、分析命题,理解真、假命题

1.让学生分析两个命题的不同之处.

(l)若a0,b0,则a+b0.

(2)若a0,b0,则a+b0.

相同之处:都是命题.为什么?都是对a0,b0时,a+b的和的正负,做出判断,都有题设和结论.

不同之处:(1)中的结论是正确的,(2)中的结论是错误的.

教师及时指出:同学们发现了命题的两种情况.结论是正确的或结论是错误的,那么我们就有了对命题的一种分类:真命题和假命题.

2.给出真、假命题定义.

真命题:如果题设成立,那么结论一定成立,这样的命题,叫做真命题.

假命题:如果题设成立,结论不成立,这样的命题都是错误的命题,叫做假命题.

注意:

(1)真命题中的一定成立不能有一个例外,如命题:0,b0,则ab.显然当a=0时,ab0不成立,所以该题是假命题,不是真命题.

(2)假命题中结论不成立是指不能保证结论总是正确,如:a的倒数一定是,显然当a=0时命题不正确,所以也是假命题。

(3)注意命题与假命题的区别.如:延长直线AB.这本身不是命题.也更不是假命题.

(4)命题是一个判断,判断的结果就有对错之分.因此就要引入真假命题,强调真假命题的大前提,首先是命题.

3.运用概念,判断真假命题.

例 请判断以下命题的真假.

(1)若ab0,则a0,b0.

(2)两条直线相交,只有一个交点.

(3)如果n是整数,那么2n是偶数.

(4)如果两个角不是对顶角,那么它们不相等.

(5)直角是平角的一半.

解:(l)(4)都是假命题,(2)(3)(5)是真命题.

4.介绍一个不辨真伪的命题.

每一个大于4的偶数都可以表示成两个质数之和.(即著名的哥德巴赫猜想)

我们可以举出很多数字,说明这个结论是正确的,而且至今没有人举出一个反例,但也没有一个人能证明它对一切大于4的偶数正确.我国著名的数学家陈景润,已证明了每一个大于4的偶数都可以表示成一个质数与两个质数之积的和.即已经证明了1+2,离1+1只差一步之遥.所以这个命题的真假还不能做最好的判定.

5.怎样辨别一个命题的真假.

(l)实际生活问题,实践是检验真理的唯一标准.

(2)数学中判定一个命题是真命题,要经过证明.

(3)要判断一个命题是假命题,只需举一个反例即可.

三、总结

师生共同回忆本节的学习内容.

1.什么叫命题?真命题?假命题?

2.命题是由哪两部分构成的?

3.怎样将命题写成如果,那么的形式.

4.初步会判断真假命题.

教师提示应注意的问题:

1.命题与真、假命题的关系.

2.抓住命题的两部分构成,判断一些语句是否为命题.

3.命题中的题设条件,有两个或两个以上,写如果时应写全面.

4.判断假命题,只需举一个反例,而判断真命题,数学问题要经过证明.

四、作业

1.选用课本习题.2.以下供参选用.

(1)指出下列语句中的命题.

①我爱祖国.

②直线没有端点.

③作AOB的平分线OE.

④两条直线平行,一定没有交点.

⑤能被5整除的数,末位一定是0.

⑥奇数不能被2整除.

⑦学习几何不难.

(2)找出下列各句中的真命题.

①若a=b,则a2=b2.

②连结A,B两点,得到线段AB.

③不是正数,就不会大于零.

④90的角一定是直角.

⑤凡是相等的角都是直角.

(3)将下列命题写成如果,那么的形式.

①两条直线平行,同旁内角互补.

②若a2=b2,则a=b.

③同号两数相加,符号不变.

④偶数都能被2整除.

⑤两个单项式的和是多项式.

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
大家都在看

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限