2015-09-23
收藏
教学目标
1.理解三步计算的应用题的数量关系,掌握解题思路.
2.能分步解答较容易的三步计算应用题.
3.继续培养学生类推、分析、比较能力.
教学重点
理解应用题的数量关系.
教学难点
确定应用题的解题步骤.
教学步骤
一、铺垫孕伏.
1.口算.
562+56= 784-22= 45(3+26)=
168-174= 100-10053= (100-1005)3=
2.华山小学三年级栽树56棵,四年级栽的棵数是三年级的2倍.三年级和四年级一共栽树多少棵?
提示:要想求出三、四年级一共栽树多少棵,必须知道哪两个条件?四年级栽树棵数怎样求?为什么用562,你们是根据哪句话这样求的?
二、探究新知.
1.改复习题为例5:华山小学三年级栽树56棵,四年级栽的棵数是三年级的2倍,五年级栽的比三、四年级栽的总数少10棵,五年级栽树多少棵?
2.读题,找出已知条件和所求问题.讨论:你认为这道题的关键句是哪一句?
(教师在五年级栽的比四年级总数少10棵下面画出曲线.)
3.怎样用线段图表示题中的数量关系呢?
4.根据线段图和题意,讨论思考:
要求出五年级栽树多少棵,必须先知道什么?你是根据什么这样说的?为什么?
启发学生:三、四年级一共栽树多少棵能直接求出来吗?解答这道题,第一步求什么?第二步求什么?第三步求什么?(通过线段图,帮助学生理解算理.)
5.通过交流汇报,确定解题思路,教师板书小标题,指定一名学生板演,形成板书:
(1) 四年级栽树多少棵?
562=112(棵)
(2) 三、四年级一共栽树多少棵?
56+112=168(棵)
(3) 五年级栽树多少棵?
168-10=158(棵)
答:五年级栽树158棵.
6.反馈练习.
学校举行运动会,三年级有35人参加比赛,四年级参加的人数是三年级3倍,五年级参加的人数比三、四年级参加的总人数多12人.五年级参加比赛的有多少人?
三、巩固发展.
1.学校里有柳树36棵,松树比柳树少12棵,杨树的棵树等于松树和柳树总棵数的4倍.有杨树多少棵?
同桌互相说这道题的关键句是什么,应先求什么,再求什么,最后求什么.
2.狮子可以活40年,大象活的年数是狮子的2倍,海龟活的年数比大象活的年数的2倍还多20年.海龟能活多少年?(先画图表示已知条件和问题,再列式计算)
四、课堂小结.
第一:回顾本课学习内容,指出这类应用题是三步计算应用题.
第二:解答此类应用题,要抓住关键语句,明确数量关系,通过分析关键语句确定的数量关系,明确解题步骤.
第三:提示同学,有的已知条件在解题时不止用一次.
五、布置作业.
学校组织数学比赛.五年级参加60人,四年级参加45人,五年级参加的人数是三年级的2倍.三个年级一共有多少人参加比赛?(画图并计算)
七年级数学同底数幂的乘法1
七年级数学变量之间的关系3
七年级数学速度的变化1
七年级数学三角形全等的条件3
七年级数学垂线
七年级数学全面调查举例
七年级数学三角形的外角
七年级数学合并同类项2
七年级数学二元一次方程组3
七年级数学二元一次方程组2
七年级数学同底数幂的除法1
七年级数学认识三角形3
七年级数学台球桌面上的角2
七年级数学世界新生儿图2
七年级数学代入法解方程组
七年级数学余角和补角
七年级数学三角形全等的条件2
七年级数学认识三角形1
七年级数学不等式和不等式组2
七年级数学近似数和有效数字2
七年级数学多边形的内角和
七年级数学二元一次方程组1
七年级数学轴对称现象2
七年级数学认识百万分之一2
七年级数学轴对称现象3
七年级数学不等式的性质
七年级数学多边形2
七年级数学全等三角形1
七年级数学轴对称的性质
七年级数学代数式1
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |