2017-05-12
收藏
一、教学内容:
有理数的加减
1. 理解 有理数的加减法法则以及减法与加法的转换关系;
2. 会用有理数的加减法解决生活中的实际问题.
3. 有理数的加减混合运算.
二、知识要点:
1. 有理数加法的意义
(1)在小学我们学过,把两个数合并成一个数的运算叫加法,数的范围扩大到有理数后,有理数的加法所表示的意义仍然是这种运算.
(2)两个有理数相加有以下几种情况:
①两个正数相加;②两个负数相加;③异号两数相加;④正数或负数或零与零相加.
(3)有理数的加法法则:
同号两数相加,取相同的符号,并把绝对值相加.
异号两数相加,绝对值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.
一个数同0相加,仍得这个数.
注意:①有理数的加法和小学学过的加法有很大的区别,小学学习的加法都是非负数,不考虑符号,而有理数的加法涉及运算结果的符号;②有理数的加法在进行运算时,首先要判断两个加数的符号,是同号还是异号?是否有零?接下来确定用法则中的哪一条;③法则中,都是先强调符号,后计算绝对值,在应用法则的过程中一定要“先算符号”,“再算绝对值”.
2. 有理数加法的运算律
(1)加法交换律:a+b=b+a;
(2)加法结合律:(a+b)+c=a+(b+c).
根据有理数加法的运算律,进行有理数的运算时,可以任意交换加数的位置,也可以先把其中的几个数加起来,利用有理数的加法运算律,可使运算简便.
3. 有理数减法的意义
(1)有理数的减法的意义与小学学过的减法的意义相同.已知两个加数的和与其中一个加数,求另一个加数的运算,叫做减法.减法是加法的逆运算.
(2)有理数的减法法则:减去一个数等于加上这个数的相反数.
4. 有理数的加减混合运算
对于加减混合运算,可以根据有理数的减法法则,将加减混合运算转化为有理数的加法运算。然后可以运用加法的交换律和结合律简化运算。
三、重点难点:
重点:①有理数的加法法则和减法法则;②有理数加法的运算律.难点:①异号两个有理数的加法法则;②将有理数的减法运算转 化为加法运算的过程.(这一过程中要同时改变两个符号:一个是运算符号由“-”变为“+”;另一个是减数的性质符号,变为原来的相反数)
平均数第二课时 教案
分式的乘除法(1)教案
分式的加减法教案
极差教教学设计
正方形的判定定理教案
矩形(四)
菱形的判定 教案
平均数第一课时 教案
菱形的性质定理教案
特殊的平行四边形教案
平行四边形的判定载教案
教学设计:平行四边形及其性质
分式教案
菱形的判定定理教案
教案:矩形
正方形(一)教案
中位数和众数(二)教学设计
矩形的判定 教案
矩形的性质 教案
矩形的判定定理教案
梯形2教案
频数与频率教案2
平行四边形及其性质(一)教学设计
19.4 课题学习 重心教案
教案:正方形的判定
平行四边形的性质及判定(复习课)教案
正方形的判定(四)教案
新人教版八年级下册数学全套教案
梯形1教案
分式的通分教案
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |