2017-04-25
收藏
函数的零点
(1)定义:
对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点.
(2)函数的零点与相应方程的根、函数的图象与x轴交点间的关系:
方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点.
(3)函数零点的判定(零点存在性定理):
如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.
典型例题1:
2
二二次函数y=ax2+bx+c(a0)的图象与零点的关系
典型例题2:
3
三二分法
对于在区间[a,b]上连续不断且f(a)·f(b)0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.
1、函数的零点不是点:
函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴交点的横坐标,所以函数的零点是一个数,而不是一个点.在写函数零点时,所写的一定是一个数字,而不是一个坐标.
2、对函数零点存在的判断中,必须强调:
(1)、f(x)在[a,b]上连续;
(2)、f(a)·f(b)0;
(3)、在(a,b)内存在零点.
这是零点存在的一个充分条件,但不必要.
3、对于定义域内连续不断的函数,其相邻两个零点之间的所有函数值保持同号.典型例题3:
利用函数零点的存在性定理判断零点所在的区间时,首先看函数y=f(x)在区间[a,b]上的图象是否连续不断,再看是否有f(a)·f(b)0.若有,则函数y=f(x)在区间(a,b)内必有零点.
4
四判断函数零点个数的常用方法
1、解方程法:
令f(x)=0,如果能求出解,则有几个解就有几个零点.
2、零点存在性定理法:
利用定理不仅要判断函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点.
3、数形结合法:
转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的个数,就是函数零点的个数.
典型例题4:
已知函数有零点(方程有根)求参数取值常用的方法
1、直接法:
直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.
2、分离参数法:
先将参数分离,转化成求函数值域问题加以解决.
3、数形结合法:
先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.
求比一个数少几的应用题
相差关系应用题
求相差数的应用题练习
笔算退位减
万以内加、减法
减法算式中各部分之间的关系
天气情况
《观察物体》设计
直角的初步认识
加、减法算式中各部分之间关系应用的练习
相差关系应用题练习(1)
两位数加两位数口算
口算综合练习
千克、克、时、分、秒和直角初步认识复习
乘、除法及两步计算式题复习
千以内数的大小比较
混合运算综合练习
混合运算复习
连续两问应用题的复习
笔算不退位减
二年数学上:《角的初步认识(一)》教学设计
相差关系应用题练习
连续退位减
口算几百几十加、减几百练习
连续两问应用题练习
复习万以内笔算加减法和混合运算
被减数末尾有0的退位减法
加法算式中各部分之间的关系
《乘法算式中的各部分名称》设计
求减法算式中的未知数
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |