数学2017年高考数学的答...
首页>学习园地>考前复习>2017年...

2017年高考数学的答题套路,你知道么?

2017-04-25 收藏

数学答题有模板吗?有的,给大家总结出来了!但是,提醒大家,有了模板不代表你一定能拿高分,该学的基础知识还是得需要掌握好的,公式、定理、计算、审题等等一个都不能少!最后3个月,加油!

选择填空题答题套路

1.选择题十大速解方法:

排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;

2.填空题四大速解方法:

直接法、特殊化法、数形结合法、等价转化法。

解答题答题模板

1.三角变换与三角函数的性质问题

(1)解题路线图

①不同角化同角

②降幂扩角

③化f(x)=Asin(ωx+φ)+h

④结合性质求解。

(2)构建答题模板

①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。

②整体代换:将ωx+φ看作一个整体,利用y=sinx,y=cosx的性质确定条件。

③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。

④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。

2.解三角形问题

(1)解题路线图

①a化简变形;b用余弦定理转化为边的关系;c变形证明。

②a用余弦定理表示角;b用基本不等式求范围;c确定角的取值范围。

(2)构建答题模板

①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。

②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。

③求结果。

④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。

3.数列的通项、求和问题

(1)解题路线图

①先求某一项,或者找到数列的关系式。

②求通项公式。

③求数列和通式。

(2)构建答题模板

①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。

②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。

③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。

④写步骤:规范写出求和步骤。

⑤再反思:反思回顾,查看关键点、易错点及解题规范。

4.利用空间向量求角问题

(1)解题路线图

①建立坐标系,并用坐标来表示向量。

②空间向量的坐标运算。

③用向量工具求空间的角和距离。

(2)构建答题模板

①找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。

②写坐标:建立空间直角坐标系,写出特征点坐标。

③求向量:求直线的方向向量或平面的法向量。

④求夹角:计算向量的夹角。

⑤得结论:得到所求两个平面所成的角或直线和平面所成的角。

5.圆锥曲线中的范围问题

(1)解题路线图

①设方程。

②解系数。

③得结论。

(2)构建答题模板

①提关系:从题设条件中提取不等关系式。

②找函数:用一个变量表示目标变量,代入不等关系式。

③得范围:通过求解含目标变量的不等式,得所求参数的范围。

④再回顾:注意目标变量的范围所受题中其他因素

的制约。

6.解析几何中的探索性问题

(1)解题路线图

①一般先假设这种情况成立(点存在、直线存在、位置关系存在等)

②将上面的假设代入已知条件求解。

③得出结论。

(2)构建答题模板

①先假定:假设结论成立。

②再推理:以假设结论成立为条件,进行推理求解。

③下结论:若推出合理结果,经验证成立则肯。定假设;若推出矛盾则否定假设。

④再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规范性。

7.离散型随机变量的均值与方差

(1)解题路线图

①a标记事件;b对事件分解;c计算概率。

②a确定ξ取值;b计算概率;c得分布列;d求数学期望。

(2)构建答题模板

①定元:根据已知条件确定离散型随机变量的取值。

②定性:明确每个随机变量取值所对应的事件。

③定型:确定事件的概率模型和计算公式。

④计算:计算随机变量取每一个值的概率。

⑤列表:列出分布列。

⑥求解:根据均值、方差公式求解其值。

8.函数的单调性、极值、最值问题

(1)解题路线图

①a先对函数求导;b计算出某一点的斜率;c得出切线方程。

②a先对函数求导;b谈论导数的正负性;c列表观察原函数值;d得到原函数的单调区间和极值。

(2)构建答题模板

①求导数:求f(x)的导数f′(x)。(注意f(x)的定义域)

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
泸教版 新课标A版
新课标B版 上海教育版
不限
上下册
上册
下册
不限