怎样理解定义、定理、公理和定律?_趣味数学 - 查字典数学网
数学怎样理解定义、定理、公...
首页>数学杂谈>趣味数学>怎样理解定...

怎样理解定义、定理、公理和定律?

2016-10-28 收藏

怎样理解定义、定理、公理和定律? 对定义的理解是,对于一个名词或术语的意义的规定就是这个名词或术语的定义。例如,“如果整数a能被自然数b整除,那么a叫做b的倍数,b叫做a的约数”,这就是倍数、约数的定义。又如,“大于直角而小于平角的角叫做钝角”,这就是钝角的定义。

把概念用文字或语言表达出来,叫做给这个概念下定义。给概念下定义常用两种方法:一种叫做内涵法,一种叫做外延法。

用内涵法定义概念采用如下公式:

被定义概念=邻近的种+类差。

例如,多边形和四边形都是平行四边形的种,而四边形就是邻近的种。类差就是被定义的概念区别于种概念的本质属性。例如,平行四边形区别于其他四边形的本质属性是它的两组对边分别平 行,这样便得出平行四边形的定义:“两组对边分别平行的四边形叫做平行四边形”。

用外延法定义概念,就是把概念所反映的具体对象一一罗列出来。例如,有理数的定义就是采用了外延法。即“整数和分数统称为有理数”。

定义有两个任务:

(1)把被定义的对象同其他对象区别开;

(2)揭示出被定义对象的本质属性。

对定理的理解是,能用推理的方法证明是正确的命题叫做定理。例如,“如果两个数都能被同一个自然数整除,那么它们的和也能被这个自然数整除”。又如,“对顶角相等”。这些都是定理。每个定理都包含“条件”和“结论”两个部分,条件是已知的部分,结论是从条件经过推理而得到的结果。

对公理的理解是,人们在实践中反复验证过的,并且不需要再加以证明就被公认的真理叫做公理。例如,“经过两点可以作一条直线,并且只可以作一条直线”;“经过直线外的一点,只可以作一条直线和这条直线平行。”

对定律的理解是,在数学中,具有某种规律性的结论叫做定律。例如,乘法对加法的分配律(a+b)c=ac+bc,就是定律。

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限