奇妙的数字9_趣味数学 - 查字典数学网
数学奇妙的数字9
首页>数学杂谈>趣味数学>奇妙的数字9

奇妙的数字9

2016-10-28 收藏

1945年8月15日,二战结束,日本宣布投降.把年、月、日的这些数连在一起,就成了1945815.将这些数字重新排列一下,任意构成一个不同的数(比如4591815)在这两个数中,用大的减去小的,得到一个差数.把差的各个数字加起来,如果是二位数,就再把它的两个数字加起来,最后结果是9.(不信,你做一遍)

牛顿出生于1642年12月25日,数学王子高斯出生于1777年4月30日,希尔伯特的生日是1862年1月23日,香港回归的时间是1997年7月1日,和上面一样,你将得到四个较大的数,而且按照上面的方法去计算,最后一定也得9.也许有人认为,太奇妙了,自觉地给这些人物,这些事件赋予了神秘色彩,认为“天将降大任于斯人”.事实上,您错了.把您的生日写出来做同样的计算,也会有同样的结果.

事实上,用任何一种方法得到一个大数的各位数字相加得到一个和,这个和又是一个新的数,把这个新的数的各位数字相加又得到一个和,如此,重复刚才的过程,只到最后的数字之和是一位数为上.那么这个数就是原数除以9的余数,我们把这个余数称之为原数的“数字根”.这个数字根的过程称为“弃九法”.

根据同余原理,我们知道,在求一个数的数字根时,可以把原数的数字9舍去,相加得9后,也可以舍去.例如,求549721的数字根时,其中有9,而且5+4,7+2都是9,尽可以舍去,最后只剩下1,这就是原数的数字根.

由这些知识,我们就能很好地解释前面的9的奥妙了.事实上,一个数,将它的各个数字重排,获得了一个新数.但原数和新数的数字根相同,也就是被9除有相同的余数.把这两个数相减后,又得到一个数.由同余原理知道,这个数就会是9的倍数,它的数字根是0或9.再经过刚才辗转的过程,再得到一个两位数.事实上,被9整除的两位数的数字之和一定是9,没有例外,这为什么结果总是9的原因,同学们,你们明白了吗?

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
大家都在看

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限