2016-10-25
收藏
1、将A,B,C,D,E,F分成三组,共有多少种不同的分法
解:要将A,B,C,D,E,F分成三组,可以分为三类办法:
(1-1-4)分法,(1-2-3)分法,(2-2-2)分法
下面分别计算每一类的方法数:
第一类(1-1-4)分法,这是一类整体不等分局部等分的问题,可以采用两种解法
解法一:从六个元素中取出四个不同的元素构成一个组,余下的两个元素各作为一个组,有种不同的分法
解法二:从六个元素中先取出一个元素作为一个组有种选法,再从余下的五个元素中取出一个元素作为一个组有种选法,最后余下的四个元素自然作为一个组,由于第一步和第二步各选取出一个元素分别作为一个组有先后之分,产生了重复计算,应除以
所以共有=15种不同的分组方法
第二类(1-2-3)分法,这是一类整体和局部均不等分的问题,首先从六个不同的元素中选取出一个元素作为一个组有种不同的选法,再从余下的五个不同元素中选取出两个不同的元素作为一个组有种不同的选法,余下的最后三个元素自然作为一个组,根据乘法原理共有=60种不同的分组方法
第三类(2-2-2)分法,这是一类整体"等分"的问题,首先从六个不同元素中选取出两个不同元素作为一个组有种不同的取法,再从余下的四个元素中取出两个不同的元素作为一个组有种不同的取法,最后余下的两个元素自然作为一个组由于三组等分存在先后选取的不同的顺序,所以应除以,因此共有=15种不同的分组方法
根据加法原理,将A,B,C,D,E,F六个元素分成三组共有:15+60+15=90种不同的方法
2、一排九个坐位有六个人坐,若每个空位两边都坐有人,共有多少种不同的坐法
解:九个坐位六个人坐,空了三个坐位,每个空位两边都有人,等价于三个空位互不相邻,可以看做将六个人先依次坐好有种不同的坐法,再将三个空坐位"插入"到坐好的六个人之间的五个"间隙"(不包括两端)之中的三个不同的位置上有种不同的"插入"方法根据乘法原理共有=7200种不同的坐法
整式教案2
再探实际问题与一元一次方程教案
有理数的除法教案(第2课时)
整式的加减教案 人教版
从算式到方程(一)学案 人教版数学
整式的加减教案(第一课时) 人教版数学
3.3一元一次方程去括号教案
再探实际问题与一元一次方程(一)学案 人教版数学
有理数的乘方(1)教案
整式的加减教案(第三课时)
整式教案(1)
有理数的乘方教案(一) 人教版数学
有理数的乘法(第一课时)教案
教案:整式的加减
有理数的加法(第一课时)教案
初二下册数学练习题:平行四边形
整式教案(3)
整式的加减教案(第二课时) 人教版数学
整式的加减教案(第一课时)
整式的加减教案(5)
有理数的除法教案 人教版数学二
有理数的除法教案(第一课时) 人教版数学
有理数的乘法导学案(第二课时) 人教版数学
整式第一课时教案
教案 :再探实际问题与一元一次方程
再探实际问题与一元一次方程教案 人教版数学
2.2.1 整式的加减教案
整式教案3
人教版数学 有理数的乘方教案
一元一次方程的解法(2)——去括号学案 人教版数学
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |