九年级中考复习数学教案_教学设计 - 查字典数学网
数学九年级中考复习数学教案
首页>数学教研>教学设计>九年级中考复习数学教案

九年级中考复习数学教案

2013-07-24 收藏

 

【小编寄语】查字典数学网小编给大家整理了九年级中考复习数学教案 ,希望能给大家带来帮助!

§6.6 函数的应用(1)

一、知识要点

一次函数、反比例函数的应用.

二、课前演练

1.(2010上海)一辆汽车在行驶过程中,路程y(千米)与

时间x(小时)之间的函数关系如图所示 当时 0≤x≤1,

y关于x的函数解析式为y=60x,那么当 1≤x≤2时,y

关于x的函数解析式为_____ _______________.

2.(2012丽水)甲、 乙两人以相同路线前往离学校12千米

的地方参加植树活动. 图中l甲、l乙分别表示甲、乙两人

前往目的地所行驶的路程S(千米)随时间t(分)变化的函

数图象,则每分钟乙比甲多行驶  千米.

三、例题分析

例1 (2011南京)小颖和小亮上山游玩,小颖乘缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50min才乘上缆车,缆车的平均速度为180m/min.设小亮出发xmin后行走的路程为ym.图中的折线表示小亮在整个行走过程中y与x的函数关系.

⑴小亮行走的总路程是_______㎝,他途中休息了______min.

⑵①当50≤x≤80时,求y与x的函数关系式;

②当小颖到达缆车终点为时,小亮离缆车终点的路程是多少?

例2(2011成都)如图,反比例函数y=kx(k≠0)的图象经过点(12 ,8),直线y=-x+b经过该反比例函数图象上的点Q(4,m).

(1)求上述反比例函数和直线的函数表达式;

(2)设该直线与x轴、y轴分别交于A、B两点,与反比例函数

图象的另一个交点为P,连接0P、OQ,求△OPQ的面积.

四、巩固练习

1. 拖拉机开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油y(升)与它工作的时间t(时)之间的函数关系的图象是( )

2. 已知等腰三角形的周长为10㎝,将底边长y㎝表示为腰长x㎝的关系式是y=10-2x,则其自变量x的取值范围是( )

A.00

3.(2012连云港)我市某医药公司要把药品运往外地,现有两种运输方式可供选择:

方式一:使用快递公司的邮车运输,装卸收费400元,另外每公里再加收4元;

方式二:使用铁路运输公司的火车运输,装卸收费820元,另外每公里再加收2元,

(1)分别写出邮车、火车运输的总费用y1(元)、y2(元)与运输路程x(km)之间的函数关系式;

(2)你认为选用哪种运输方式较好,为什么?

4. 制作一种产品,需先将材料加热达到60℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(分钟).据了解,设该材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图).已知该材料在操作加工前的温度为15℃,加热5分钟后温度达到60℃.

(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;

(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?

海南初中数学组

§6.7 函数的应用(2)

一、知识要点

二次函数在实际问题中的应用.

二、课前演练

1.(2011株洲)某广场有一喷水池,水从地面喷出,如图,

以水平地面为x轴,出水点为原点,建立直角坐标系,

水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的

一部分,则水喷出的最大高度是( )

A.4米 B.3米 C.2米 D.1米

2.(2011梧州)2011年5月22日—29日在美丽的青岛市

举行了苏迪 曼杯羽毛球混合团体锦标赛.在比赛中,某

次羽毛球的运动路线可以看作是抛物线y=-14x2+bx+c的一

部分(如图),其中出球点B离地面O点的距离是1m,球落

地点A到O点的距离是4m,那么这条抛物线的解析式是( )

A.y=-14x2+34x+1 B.y=-14x2+34x-1 C.y=-14x2-34x+1 D.y=-14x2-34x-1

三、例题分析

例1(2011沈阳)一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0

(1)用含 的代数式表示,今年生产的这种玩具每件的成本为________元,今年生产的这种玩具每件的出厂价为_________元.

(2)求今年这种玩具的每件利润y元与x之间的函数关系式.

(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?

注:年销售利润=(每件玩具的出厂价-每件玩具的成本)×年销售量.

四、巩固练习

1.(2011西宁)西宁中心广场有各种音乐喷泉,其中一个喷水管

的最大高度为3米,此时距喷水管的水平距离为12米,在如图

所示的坐标系中,这个喷泉的函数关系式是( )

A.y=-(x-12)2+3 B.y=-3(x+12)2+3 C.y=-12(x-12)2+3 D.y=-12(x+12)2+3

2.(2011聊城)某公园草坪的防护栏由100段形状

相同的抛物线形构件组成,为了牢固起见,每段

护栏需要间距0.4m加设一根不锈钢的支柱,防护

栏的最高点距底部0.5m(如图),则这条防护栏需

要不锈钢支柱的总长度至少为( )

A.50m B.100m C.160m D.200m

3.(2011甘肃)如图,正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是( )

4. 某公司试销一种成本单价为500元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于800元/件,经试销调查,发现销售量y(件)与销售单价x(元/件)可近似看作一次函数y=kx+b的关系(如图).

(1)根据图象,求出一次函数的解析式;

(2)设公司获得的毛利润为S元.

①试用销售单价x表示毛利润S;

②请结合S与x的函数图象说明:销售单价定为多少时,该公司可获得最大利润?最大利润是多少?此时销售量是多少?

5.(2011曲靖)一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是y=-112 x2+23 x+53 ,铅球运行路线如图.

(1)求铅球推出的水平距离;

(2)通过计算说明铅球行进高度能否达到4m.

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限