2017中考数学考前必做专题试题-查字典数学网
数学2017中考数学考前必...
首页>学习园地>题型归纳>2017中...

2017中考数学考前必做专题试题

2016-08-31

初中的学习至关重要,广大中学生朋友们一定要掌握科学的学习方法,提高学习效率。以下是查字典数学网为大家提供的中考数学考前必做专题试题,供大家复习时使用!

一、选择题

1.如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为( )

A.(—2012,2) B.(一2012,一2) C. (—2013,—2) D. (—2013,2)

考点:坐标与图形变化-对称;坐标与图形变化-平移.

专题:规律型.

分析:首先求出正方形对角线交点坐标分别是(2,2),然后根据题意求得第1次、2次、3次变换后的点M的对应点的坐标,即可得规律.

解答:∵正方形ABCD,点A(1,3)、B(1,1)、C(3,1).∴M的坐标变为(2,2)

∴根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),

第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),

第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),

第2014次变换后的点M的对应点的为坐标为(2-2014, 2),即(-2012, 2)

2现定义一种变换:对于一个由有限个数组成的序列 ,将其中的每个数换成该数在 中出现的次数,可得到一个新序列.例如序列 :(4,2,3,4,2),通过变换可得到新序列 :(2,2,1,2,2).若 可以为任意序列,则下面的序列可以作为 的是

A.(1,2,1,2,2) B.(2,2,2,3,3)

C.(1,1,2,2,3) D.(1,2,1,1,2)

【解析】由于序列 含5个数,于是新序列中不能有3个2,所以A,B中所给序列不能作为 ; 又如果 中有3,则 中应有3个3,所以C中所给序列也不能作为 ,故选D.

3. ( 2014•广西贺州,第12题3分)张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x+(x>0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x,则另一边长是,矩形的周长是2(x+);当矩形成为正方形时,就有x=(0>0),解得x=1,这时矩形的周长2(x+)=4最小,因此x+(x>0)的最小值是2.模仿张华的推导,你求得式子 (x>0)的最小值是()

A. 2 B. 1 C. 6 D. 10

考点: 分式的混合运算;完全平方公式.

专题: 计算题.

分析: 根据题意求出所求式子的最小值即可.

解答: 解:得到x>0,得到 =x+≥2 =6,

4. 如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()

A. 1,2,3 B. 1,1, C. 1,1, D. 1,2,

考点: 解直角三角形

专题: 新定义.

分析: A、根据三角形三边关系可知,不能构成三角形,依此即可作出判定;

B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;

C、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;

D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.

解答: 解:A、∵1+2=3,不能构成三角形,故选项错误;

B、∵12+12=( )2,是等腰直角三角形,故选项错误;

C、底边上的高是 = ,可知是顶角120°,底角30°的等腰三角形,故选项错误;

D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.

二、填空题

1.规定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,sin(x+y)=sinx•cosy+cosx•siny.

据此判断下列等式成立的是 ②③④ (写出所有正确的序号)

①cos(﹣60°)=﹣;

②sin75°= ;

③sin2x=2sinx•cosx;

④sin(x﹣y)=sinx•cosy﹣cosx•siny.

考点: 锐角三角函数的定义;特殊角的三角函数值.

专题: 新定义.

分析: 根据已知中的定义以及特殊角的三角函数值即可判断.

解答: 解:①cos(﹣60°)=cos60°=,命题错误;

②sin75°=sin(30°+45°)=sin30°•cos45°+cos30°•sin45°=× + × = + = ,命题正确;

③sin2x=sinx•cosx+cosx•sinx═2sinx•cosx,故命题正确;

④sin(x﹣y)=sinx•cos(﹣y)+cosx•sin(﹣y)=sinx•cosy﹣cosx•siny,命题正确.

2.在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:

(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);

(2)g(m,n)=(﹣m,﹣n),如g (2,1)=(﹣2,﹣1)x k b 1 . c o m

按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]= (3,2) .

考点: 点的坐标.

专题: 新定义.

分析: 由题意应先进行f方式的运算,再进行g方式的运算,注意运算顺序及坐标的符号变化.

解答:x kb 1 解:∵f(﹣3,2)=(﹣3,﹣2),

∴g[f(﹣3,2)]=g(﹣3,﹣2)=(3,2),

三、解答题

1.定义新运算:对于任意实数a,b都有a△b=ab﹣a﹣b+1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4﹣2﹣4+1=8﹣6+1=3,请根据上述知识解决问题:若3△x的值大于5而小于9,求x的取值范围.

考点:新定义.

分析:首先根据运算的定义化简3△x,则可以得到关于x的不等式组,即可求解.

2阅读材料:解分式不等式<0

解:根据实数的除法法则:同号两数相除得正数,异号两数相除得负数,因此,原不等式可转化为:

① 或②

解①得:无解,解②得:﹣2

所以原不等式的解集是﹣2

请仿照上述方法解下列分式不等式:

(1) ≤0

(2) >0.

考点: 一元一次不等式组的应用.

专题: 新定义.

分析: 先把不等式转化为不等式组,然后通过解不等式组来求分式不等式.

解答: 解:(1)根据实数的除法法则:同号两数相除得正数,异号两数相除得负数,因此,原不等式可转化为:

① 或②

解①得:无解,

解②得:﹣2.5

所以原不等式的解集是:﹣2.5

(2)根据实数的除法法则:同号两数相除得正数,异号两数相除得负数,因此,原不等式可转化为:

① 或②

解①得:x>3,

解②得:x<﹣2.

3.

【试题背景】已知:∥ ∥ ∥,平行线与 、 与 、 与之间的距离分别为 1、 2、 3,且 1 = 3 = 1, 2 = 2 . 我们把四个顶点分别在、 、 、这四条平行线上的四边形称为“格线四边形”.

【探究1】 ⑴ 如图1,正方形 为“格线四边形”, 于点 , 的反向延长线交直线于点 . 求正方形 的边长.

【探究2】 ⑵ 矩形 为“格线四边形”,其长 :宽 = 2 :1 ,则矩形 的宽为 . (直接写出结果即可)

【探究3】 ⑶ 如图2,菱形 为“格线四边形”且∠ =60°,△ 是等边三角形, 于点 , ∠ =90°,直线 分别交直线、于点 、 . 求证: .

【拓 展】 ⑷ 如图3,∥,等边三角形 的顶点 、 分别落在直线、上, 于点 ,且 =4 ,∠ =90°,直线 分别交直线、于点 、 ,点 、 分别是线段 、 上的动点,且始终保持 = , 于点 .

猜想: 在什么范围内, ∥ ?并说明此时 ∥ 的理由.

解析:(1) 如图1,

∵BE⊥l , l ∥k ,

∴∠AEB=∠BFC=90°,

又四边形ABCD是正方形,

∴∠1+∠2=90°,AB=BC, ∵∠2+∠3=90°, ∴ ∠1=∠3,

∴⊿ABE≌⊿BCF(AAS),

∴AE=BF=1 , ∵BE=d1+d2=3 , ∴AB= ,

∴正方形的边长是 .

(2)如图2,3,

⊿ABE∽⊿BCF,

∴ 或

∵BF=d3=1 ,

∴AE= 或

∴AB= 或

AB=

∴矩形ABCD的宽为 或 .

(注意:要分2种情况讨论)

(3)如图4,

连接AC,

∵四边形ABCD是菱形,

∴AD=DC,

又∠ADC=60°,

∴⊿ADC是等边三角形,

∴AD=AC,

∵AE⊥k , ∠AFD=90°, ∴∠AEC=∠AFD=90°,

∵⊿AEF是等边三角形, ∴ AF=AE,

∴⊿AFD≌⊿AEC(HL), ∴EC=DF.

(4)如图5,

当2

理由如下:

连接AM,

∵AB⊥k , ∠ACD=90°,

∴∠ABE=∠ACD=90°,

∵⊿ABC是等边三角形,

∴AB=AC ,

已知AE=AD, ∴⊿ABE≌⊿ACD(HL),∴BE=CD;

在Rt⊿ABM和Rt⊿ACM中,

,∴Rt⊿ABM≌Rt⊿ACM(HL),

∴ BM=CM ;

∴ME=MD,

∴ , ∴ED∥BC.

4复习课中,教师给出关于x的函数y=2kx2﹣(4kx+1)x﹣k+1(k是实数).

教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.

学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:

①存在函数,其图象经过(1,0)点;

②函数图象与坐标轴总有三个不同的交点;

③当x>1时,不是y随x的增大而增大就是y随x的增大而减小;

④若函数有最大值,则最大值比为正数,若函数有最小值,则最小值比为负数.

教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.

考点: 二次函数综合题

分析: ①将(1,0)点代入函数,解出k的值即可作出判断;

②首先考虑,函数为一次函数的情况,从而可判断为假;

③根据二次函数的增减性,即可作出判断;

④当k=0时,函数为一次函数,无最大之和最小值,当k≠0时,函数为抛物线,求出顶点的纵坐标表达式,即可作出判断.

解答: 解:①真,将(1,0)代入可得:2k﹣(4k+1)﹣k+1=0,

解得:k=0.

运用方程思想;

②假,反例:k=0时,只有两个交点.运用举反例的方法;

③假,如k=1,﹣ =,当x>1时,先减后增;运用举反例的方法;

④真,当k=0时,函数无最大、最小值;

k≠0时,y最= =﹣ ,

∴当k>0时,有最小值,最小值为负;

5. 某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.

(1)求每台A型电脑和B型电脑的销售利润;

(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍。设购进A掀电脑x台,这100台电脑的销售总利润为y元。

①求y与x的关系式;

②该商店购进A型、B型各多少台,才能使销售利润最大?

(3)实际进货时,厂家对A型电脑出厂价下调m(0

解:(1)设每台A型电脑的销售利润为a元,每台B型电脑的销售利润为b元,

则有 解得

即每台A型电脑的销售利润为100元,每台B型电脑的销售利润为150元. ……4分

(2)①根据题意得y=100x+150(100-x),即y=-50x+15000……………………5分

②根据题意得100-x≤2x,解得x≥33 ,

∵y=-50x+15000,-50<0,∴y随x的增大而减小.

∵x为正整数,∴当x=34最小时,y取最大值,此时100-x=66.

即商店购进A型电脑34台,B型电脑66台,才能使销售总利润最大………7分

(3)根据题意得y=(100+m)x+150(100-x),即y=(m-50)x+15000.

33 ≤x≤70.

①当0

∴当x =34时,y取得最大值.

即商店购进34台A型电脑和66台B型电脑才能获得最大利润;…………8分

②当m=50时,m-50=0,y=15000.

即商店购进A型电脑数最满足33 ≤x≤70的整数时,均获得最大利润;…9分

③当500,y随x的增大而增大.

∴x=70时,y取得最大值.

即商店购进70台A型电脑和30台B型电脑才能获得最大利润.……………10分

6.实验与探究:

三角点阵前n行的点数计算

如图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点…第n行有n个点…

容易发现,10是三角点阵中前4行的点数约和,你能发现300是前多少行的点数的和吗?

如果要用试验的方法,由上而下地逐行的相加其点数,虽然你能发现1+2+3+4+…+23+24=300.得知300是前24行的点数的和,但是这样寻找答案需我们先探求三角点阵中前n行的点数的和与n的数量关系

前n行的点数的和是1+2+3+…+(n﹣2)+(n﹣1)+n,可以发现.

2×[1+2+3+…+(n﹣2)+(n﹣1)+n]

=[1+2+3+…+(n﹣2)+(n﹣1)+n]+[n+(n﹣1)+(n﹣2)+…3+2+1]

把两个中括号中的第一项相加,第二项相加…第n项相加,上式等号的后边变形为这n个小括号都等于n+1,整个式子等于n(n+1),于是得到

1+2+3+…+(n﹣2)+(n﹣1)+n=n(n+1)

这就是说,三角点阵中前n项的点数的和是n(n+1)

下列用一元二次方程解决上述问题

设三角点阵中前n行的点数的和为300,则有n(n+1)

整理这个方程,得:n2+n﹣600=0

解方程得:n1=24,n2=25

根据问题中未知数的意义确定n=24,即三角点阵中前24行的点数的和是300.

请你根据上述材料回答下列问题:

(1)三角点阵中前n行的点数的和能是600吗?如果能,求出n;如果不能,试用一元二次方程说明道理.

(2)如果把图中的三角点阵中各行的点数依次换成2、4、6、…、2n、…,你能探究处前n行的点数的和满足什么规律吗?这个三角点阵中前n行的点数的和能使600吗?如果能,求出n;如果不能,试用一元二次方程说明道理.

考点: 一元二次方程的应用;规律型:图形的变化类

分析: (1)由于第一行有1个点,第二行有2个点…第n行有n个点…,则前n行共有(1+2+3+4+5+…+n)个点,然后求它们的和,前n行共有 个点,则 =600,然后解方程得到n的值;

(2)根据2+4+6+…+2n=2(1+2+3+…+n)=2× 个进而得出即可;根据规律可得n(n+1)=600,求n的值即可.

解答: 解:(1)由题意可得: =600,

整理得n2+n﹣1200=0,

(n+25)(n﹣24)=0,

此方程无正整数解,

所以,三角点阵中前n行的点数的和不可能是600;

(2)由题意可得:

2+4+6+…+2n=2(1+2+3+…+n)=2× =n(n+1);

依题意,得n(n+1)=600,

整理得n2+n﹣600=0,

(n+25)(n﹣24)=0,

∴n1=﹣25,n2=24,

7.(2014•四川宜宾,第21题,8分)在平面直角坐标系中,若点P(x,y)的坐标x、y均为整数,则称点P为格点,若一个多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L,例如图中△ABC是格点三角形,对应的S=1,N=0,L=4.

(1)求出图中格点四边形DEFG对应的S,N,L.

(2)已知格点多边形的面积可表示为S=N+aL+b,其中a,b为常数,若某格点多边形对应的N=82,L=38,求S的值.

考点: 规律型:图形的变化类;三元一次方程组的应用

分析: (1)理解题意,观察图形,即可求得结论;

(2)根据格点多边形的面积S=N+aL+b,结合图中的格点三角形ABC及格点四边形DEFG,建立方程组,求出a,b即可求得S.

解答: 解:(1)观察图形,可得S=3,N=1,L=6;

(Ⅱ)根据格点三角形ABC及格点四边形DEFG中的S、N、L的值可得,

解得a ,

∴S=N+L﹣1,

8.(2014•甘肃兰州,第27题10分)给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.

(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;

(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.

①求证:△BCE是等边三角形;

②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.

考点: 四边形综合题.

分析: (1)根据定义和特殊四边形的性质,则有矩形或正方形或直角梯形;

(2)①首先证明△ABC≌△BDC,得出AC=DE,BC=BE,连接CE,进一步得出△BCE为等边三角形;

②利用等边三角形的性质,进一步得出△DCE是直角三角形,问题得解.

解答: 解:(1)正方形、矩形、直角梯形均可;

证明:(2)①∵△ABC≌△DBE,

∴BC=BE,

∵∠CBE=60°,

∴△BCE是等边三角形;

②∵△ABC≌△DBE,

∴BE=BC,AC=ED;

∴△BCE为等边三角形,

∴BC=CE,∠BCE=60°,

∵∠DCB=30°,

∴∠DCE=90°,

9. (2014•扬州,第26题,10分)对x,y定义一种新运算T,规定:T(x,y)= (其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)= =B.

(1)已知T(1,﹣1)=﹣2,T(4,2)=1.

①求a,b的值;

②若关于m的不等式组 恰好有3个整数解,求实数p的取值范围;

(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?

考点: 分式的混合运算;解二元一次方程组;一元一次不等式组的整数解

分析: (1)①已知两对值代入T中计算求出a与b的值;

②根据题中新定义化简已知不等式,根据不等式组恰好有3个整数解,求出p的范围即可;

(2)由T(x,y)=T(y,x)列出关系式,整理后即可确定出a与b的关系式.

解答: 解:(1)①根据题意得:T(1,﹣1)= =﹣2,即a﹣b=﹣2;

T=(4,2)= =1,即2a+b=5,

解得:a=1,b=3;

②根据题意得: ,

由①得:m≥﹣ ;

由②得:m< ,

∴不等式组的解集为﹣ ≤m< ,

∵不等式组恰好有3个整数解,即m=0,1,2,

∴2≤<3,

解得:﹣2≤p<﹣ ;

(2)由T(x,y)=T(y,x),得到 = ,

整理得:(x2﹣y2)(2b﹣a)=0,

∵T(x,y)=T(y,x)对任意实数x,y都成立,

10.(2014•济宁第21题9分)阅读材料:

已知,如图(1),在面积为S的△ABC中,BC=a,AC=b,AB=c,内切圆O的半径为r.连接OA、OB、OC,△ABC被划分为三个小三角形.

∵S=S△OBC+S△OAC+S△OAB= BC•r+ AC•r+ AB•r= (a+b+c)r.

∴r= .

(1)类比推理:若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),如图(2),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r;

(2)理解应用:如图(3),在等腰梯形ABCD中,AB∥DC,AB=21,CD=11,AD=13,⊙O1与⊙O2分别为△ABD与△BCD的内切圆,设它们的半径分别为r1和r2,求 的值.

考点: 圆的综合题.

分析: (1)已知已给出示例,我们仿照例子,连接OA,OB,OC,OD,则四边形被分为四个小三角形,且每个三角形都以内切圆半径为高,以四边形各边作底,这与题目情形类似.仿照证明过程,r易得.

(2)(1)中已告诉我们内切圆半径的求法,如是我们再相比即得结果.但求内切圆半径需首先知道三角形各边边长,根据等腰梯形性质,过点D作AB垂线,进一步易得BD的长,则r1、r2、 易得.

解答: 解:(1)如图2,连接OA、OB、OC、OD.

∵S=S△AOB+S△BOC+S△COD+S△AOD= + + + = ,

∴r= .

(2)如图3,过点D作DE⊥AB于E,

∵梯形ABCD为等腰梯形,

∴AE= = =5,

∴EB=AB﹣AE=21﹣5=16.

在Rt△AED中,

∵AD=13,AE=5,

∴DE=12,

∴DB= =20.

∵S△ABD= = =126,

11. ( 2014•安徽省,第22题12分)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.

(1)请写出两个为“同簇二次函数”的函数;

(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A(1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.

考点: 二次函数的性质;二次函数的最值.菁优网

专题: 新定义.

分析: (1)只需任选一个点作为顶点,同号两数作为二次项的系数,用顶点式表示两个为“同簇二次函数”的函数表达式即可.

(2)由y1的图象经过点A(1,1)可以求出m的值,然后根据y1+y2与y1为“同簇二次函数”就可以求出函数y2的表达式,然后将函数y2的表达式转化为顶点式,在利用二次函数的性质就可以解决问题.

解答: 解:(1)设顶点为(h,k)的二次函数的关系式为y=a(x﹣h)2+k,

当a=2,h=3,k=4时,

二次函数的关系式为y=2(x﹣3)2+4.

∵2>0,

∴该二次函数图象的开口向上.

当a=3,h=3,k=4时,

二次函数的关系式为y=3(x﹣3)2+4.

∵3>0,

∴该二次函数图象的开口向上.

∵两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4顶点相同,开口都向上,

∴两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4是“同簇二次函数”.

∴符合要求的两个“同簇二次函数”可以为:y=2(x﹣3)2+4与y=3(x﹣3)2+4.

(2)∵y1的图象经过点A(1,1),

∴2×12﹣4×m×1+2m2+1=1.

整理得:m2﹣2m+1=0.

解得:m1=m2=1.

∴y1=2x2﹣4x+3

=2(x﹣1)2+1.

∴y1+y2=2x2﹣4x+3+ax2+bx+5

=(a+2)x2+(b﹣4)x+8

∵y1+y2与y1为“同簇二次函数”,

∴y1+y2=(a+2)(x﹣1)2+1

=(a+2)x2﹣2(a+2)x+(a+2)+1.

其中a+2>0,即a>﹣2.

∴ .

解得: .

∴函数y2的表达式为:y2=5x2﹣10x+5.

∴y2=5x2﹣10x+5

=5(x﹣1)2.

∴函数y2的图象的对称轴为x=1.

∵5>0,

∴函数y2的图象开口向上.

①当0≤x≤1时,

∵函数y2的图象开口向上,

∴y2随x的增大而减小.

∴当x=0时,y2取最大值,

最大值为5(0﹣1)2=5.

②当1

∵函数y2的图象开口向上,

∴y2随x的增大而增大.

∴当x=3时,y2取最大值,

最大值为5(3﹣1)2=20.

12. ( 2014•珠海,第20题9分)阅读下列材料:

解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:

解∵x﹣y=2,∴x=y+2

又∵x>1,∵y+2>1.∴y>﹣1.

又∵y<0,∴﹣1

同理得:1

由①+②得﹣1+1

∴x+y的取值范围是0

请按照上述方法,完成下列问题:

(1)已知x﹣y=3,且x>2,y<1,则x+y的取值范围是 1

(2)已知y>1,x<﹣1,若x﹣y=a成立,求x+y的取值范围(结果用含a的式子表示).

考点: 一元一次不等式组的应用.

专题: 阅读型.

分析: (1)根据阅读材料所给的解题过程,直接套用解答即可;

(2)理解解题过程,按照解题思路求解.

解答: 解:(1)∵x﹣y=3,

∴x=y+3,

又∵x>2,

∴y+3>2,

∴y>﹣1.

又∵y<1,

∴﹣1

同理得:2

由①+②得﹣1+2

∴x+y的取值范围是1

(2)∵x﹣y=a,

∴x=y+a,

又∵x<﹣1,

∴y+a<﹣1,

∴y<﹣a﹣1,

又∵y>1,

∴1

同理得:a+1

13.(2014•四川自贡,第23题12分)阅读理解:

如图①,在四边形ABCD的边AB上任取一点E(点E不与A、B重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的“相似点”;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的“强相似点”.解决问题:

(1)如图①,∠A=∠B=∠DEC=45°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;

(2)如图②,在矩形ABCD中,A、B、C、D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图②中画出矩形ABCD的边AB上的强相似点;

(3)如图③,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB与BC的数量关系.

考点: 相似形综合题

分析: (1)要证明点E是四边形ABCD的AB边上的相似点,只要证明有一组三角形相似就行,很容易证明△ADE∽△BEC,所以问题得解.

(2)以CD为直径画弧,取该弧与AB的一个交点即为所求;

(3)因为点E是矩形ABCD的AB边上的一个强相似点,所以就有相似三角形出现,根据相似三角形的对应线段成比例,可以判断出AE和BE的数量关系,从而可求出解.

解答: 解:(1)∵∠A=∠B=∠DEC=45°,

∴∠AED+∠ADE=135°,∠AED+∠CEB=135°

∴∠ADE=∠CEB,

在△ADE和△BCE中,

∴△ADE∽△BCE,

∴点E是否是四边形ABCD的边AB上的相似点.

(2)如图所示:点E是四边形ABCD的边AB上的相似点,

(3)∵点E是四边形ABCM的边AB上的一个强相似点,

∴△AEM∽△BCE∽△ECM,

∴∠BCE=∠ECM=∠AEM.

由折叠可知:△ECM≌△DCM,

∴∠ECM=∠DCM,CE=CD,

∴∠BCE=∠BCD=30°,

BE= ,

这篇中考数学考前必做专题试题的内容,希望会对各位同学带来很大的帮助。

点击显示
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •