变量之间的关系之《 小车下滑的时间》-查字典数学网
数学变量之间的关系之《 小...
首页>数学教研>教学设计>变量之间的...

变量之间的关系之《 小车下滑的时间》

2016-05-06

学习目标:通过分析小车在斜坡上下滑时高度与时间数据之间的联系,使学生体会小车下滑时间随着高度变化而变化,从而了解变量、自变量和因变量的意义,了解可以用列表示两个变量之间的关系,培养学生分析问题的能力与归纳思维的能力。

学习重点:能从表格的数据中分清什么是变量,自变量、因变量以及因变量随自变量的变化情况。

学习难点:对表格所表达的两个变量关系的理解。

一、预习

(一)、预习书P96~P97

(二)、思考:什么是变量?什么是自变量?什么是因变量?

(三)、预习作业:

1、课堂上,学生对概念的接受能力与老师提出概念的时间(单位:分)之间有如下关系:

时间/分 0 2 10 12 13 14 16 24

接受能力 43 47.8 59 59.8 59.9 59.8 59 47.8

(1)表中反映了哪两个变量之间的关系,哪个是自变量?哪个是因变量?

(2)根据表中的数据,你认为老师在第____分钟提出观念比较适宜?说出你的理由.

二、学习过程:

(一)要点引导

1、在一个变化过程中数值保持不变的量叫做______可以取不同数值的量叫做______,如果一个量随着另外一个量的变化而变化,那么把这个量叫做______,另一个量叫做______.

2、本节是通过______形式来表示两个变量之间的关系的.

(二)例题

例1王波学习小组利用同一块木板,测量了小车从不同高度下滑的时间.他们得到如下数据:

支撑物高

度 / 厘米 10 20 30 40 50 60 70 80 90 100

小车下滑

时间 / 秒 4.23 3.00 2.45 2.13 1.89 1.71 1.59 1.50 1.41 1.35

(1)支撑物高度为70厘米时,小车下滑时间是多少?

(2)如果用h表示支撑物高度,t表示小车下滑时间,随着h逐渐变大,t的变化趋势是什么?

(3)h每增加10厘米,t的变化情况相同吗?

(4)估计当h=110时,t的值是多少,你是怎样估计的?

变式:一辆小汽车在高速公路上从静止到启动10秒后的速度经测量如下表:

时间(秒) 0 1 2 3 4 5 6 7 8 9 10

速度

(米/秒) 0 0.3 1.3 2.8 4.9 7.6 11.0 14.1 18.4 24.2 28.9

(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?

(2)如果用t表示时间,v表示速度,那么随着t的变化,v的变化趋势是什么?

(3)当t每增加1秒时,v的变化情况相同吗?在哪1秒钟内,v的增加最大?

(4)若高速公路上小汽车行驶速度的上限为120千米/时,试估计大约还需几秒这辆小汽车速度就将达到这个上限?

(三)拓展:

1、如图,是一个形如六边形的点阵,它的中心是一个点,算第一层;第二层每边两个点;第三层每边有三个点,依此类推:

(1)填写下表:

层数 1 2 3 4 5 6

该层的点数

所有层的点数

(2)每层点数是如何随层数的变化而变化的?所有层的总点数是如何随层数的变化而变化的?

(3)此题中的自变量和因变量分别是什么?

(4)写出第n层所对应的点数,以及n层的六边形点阵的总点数;

(5)如果某一层的点数是96,它是第几层?

(6)有没有一层,它的点数是100?为什么?

2、下表是明明商行某商品的销售情况,该商品原价为560元,随着不同幅度的降价(单位:元),日销量(单位:件)发生相应变化如下表:

降价(元) 5 10 15 20 25 30 35

日销量(件) 780 810 840 870 900 930 960

(1)上表反映了哪两个变量之间的关系?其中那个是自变量,哪个是因变量?

(2)每降价5元,日销量增加多少件?请你估计降价之前的日销量是多少?

(3)如果售价为500元时,日销量为多少?

(四)回顾小结:

总结本节所学的知识,从表格中获取信息;用表格表示变量之间的关系;对变化趋势进行预测。

4.2 用关系式表示的变量间的关系

学习目标:1、经历探索某些图形中变量之间的关系的过程,进一步体会一个变量对另一个变量的影响,发展符号感。

2、能根据具体情景,用关系式表示某些变量之间的关系。

3、能根据关系式求值,初步体会自变量和因变量的数值对应关系。

学习重点:1、找问题中的自变量和因变量。

2、根据关系式找自变量和因变量之间的对应关系。

学习难点:根据关系式找自变量和因变量之间的对应关系。

一、预习

(一)、预习书:P100~P101

(二)、思考:确定关系式的步骤?

(三)、预习作业:

1、会议厅共有30排座位,第一排有20个座位,后排每排比前一排多一个座位.

(1)你知道第九排有多少个座位吗?第26排呢?

(2)每排的座位数y可用排数x来表示吗?

(3)可不可能某一排的座位数是52?为什么?

二、学习过程:

(一)要点引导

1、通过表格可表示两个变量之间的关系,本节中利用_______也可表示两个变量之间的关系.

2、确定关系式的步骤:先找出题目中关于________与________的相等关系,再用________的代数式表示________

3、半径为R的圆面积S=________,当R=3时,S=________

方法小结:

1、涉及到图形的面积或体积时,写关系式的关键是利用面积或体积公式写出等式;

2、一定要将表示因变量的字母单独写在等号的左边;

3、已知一个变量的值求另一个变量的值时,一定要分清已知的是自变量还是因变量,千万不要代错了.

(二)例题

例1、如图, 底边BC上的高是6厘米,当三角形的顶点C沿底边所在直线向点B运动时,三角形的面积发生了变化.

(1)在这个变化过程中,自变量、因变量各是什么?

(2)如果三角形的底边长为x(厘米),那么三角形的面积y(厘米 )可以表示为_________

(3)当底边长从12厘米变化到3厘米时,三角形的面积从____厘米 变化到____厘米

变式1、 如图,已知梯形的上底为x,下底为8,高为4.

(1)求梯形面积y与x的关系;

(2)用表格表示,当x从3到7(每次增加1)时,y的相应值;

(3)当x每增加1时,y如何变化?

(4)当y=50时,x为多少?

(5)当x=0时,y等于多少?此时它表示的是什么?

例2、将若干张长为20cm、宽为10cm的长方形白纸,按下图所示的方法粘合起来,粘合部分的宽为2cm.

(1)求4张白纸粘合后的总长度;

(2)设x张白纸粘合后的总长度为ycm,写出y与x之间的关系式;

(3)并求当x=20时,y的值

变式2、 声音在空气中传播的速度y(米/秒)与气温 之间有如下关系:

(1)在这一变化过程中,自变量是________、因变量是________;

(2)当气温 时,声音速度y=________米/秒;

(3)当气温 时,某人看到烟花燃放5秒后才听到声响,那么此人与燃放烟花所在地约相距________米;

(三)拓展

1、如图,在 中,已知 ,边AC=4cm,BC=5cm,点P为CB边上一动点,当点P沿CB从点C向点B运动时, 的面积发生了变化.

(1)在这个变化过程中,自变量和因变量各是什么?

(2)如果设CP长为 , 的面积为 ,则y与x的关系可表示为__________;

(3)当点P从点D(点D为BC的中点)运动到点B时,则 的面积从______ 变到______

(四)回顾小结:

自变量和因变量之间的关系;根据关系式找出与自变量相应的因变量的数值。

点击显示
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •