以下是查字典数学网为您推荐的二次根式的加减,希望本篇文章对您学习有所帮助。
二次根式的加减
教学内容
利用二次根式化简的数学思想解应用题.
教学目标
运用二次根式、化简解应用题.
通过复习,将二次根式化成被开方数相同的最简二次根式,进行合并后解应用题.
重难点关键
讲清如何解答应用题既是本节课的重点,又是本节课的难点、关键点.
教学过程
一、复习引入
上节课,我们已经讲了二次根式如何 加减的问题,我们把它归为两个步骤:第一步,先将二次根式化成最简二次根式;第二步,再将被开方数相同的二次根式进行合并,下面我们讲三道例题以做巩固.
二、探索新知
例1.如图所示的Rt△ABC中,B=90,点P从点B 开始沿BA边以1厘米/秒的速度向点A移动;同时,点Q也从点B开始沿BC边以2厘米/秒的速度向点C移动.问:几秒后△PBQ的面积为35平方厘米?PQ的距离是多少厘米?(结果用最简二次根式表示)
分析:设x秒后△PBQ的面积为35平方厘米,那么PB=x,BQ=2x,根 据三角形面积公式就可以求出x的值.
解:设x 后 △PBQ的面积为35平方厘米.
则有PB=x,BQ=2x
依题意,得: x2x=35
x2=35
x=
所以 秒后△PBQ的面积为35平方厘米.
PQ= =5
答: 秒后 △PBQ的面积为35平方厘米,PQ的距离为5 厘米.
例2. 要焊接如图所示的钢架,大约需要多少米钢材(精确到0.1m)?
分析:此框架是由AB、BC、BD、AC组成,所以要求钢架的钢材,只需知道这四段的长度
解:由勾股定理,得
AB= =2
BC= =
所需钢材长度为
AB+BC+AC+BD
=2 + +5+2
=3 +7
32.24+713.7(m)
答:要 焊接一个如图所示的钢架,大约需要13.7m的钢材.
三、巩固练习
教材P19 练习3
四、应用拓展
例3.若最简根式 与根式 是同类二次根式,求a、b的值.(同类二次根式就是被开方数相同的最简二次根式)
分析:同类二次根式是指几个二次根式化成最简二次根式后,被开方数相同;事实上,根式 不是最简二次根式,因此把 化简成|b| ,才由同类二次根式的定义得3a-b=2,2a-b+6=4a+3b.
解:首先把根式 化为最简二次根式:
= =|b|
由题意得
a=1,b=1
五、归纳小结
本节课应掌握运用最简二次根式的合并原理解决实际问 题.
六、布置作业
1.教材P21 习题21.3 7.
2.选用课时作业设计.
3.课后作业:《同步训练》
作业设计
一、选择题
1.已知直角三角形的两条直角边的长分别为5和5,那么斜边的长应为( ).(结果用最简二次根式)
A.5 B. C.2 D.以上都不对
2.小明想自己钉一个长与宽分别为30cm和20cm的长方形的木框,为了增加其稳定性,他沿长方形的对角线又钉上了一根木条,木条的长应为( )米.(结果同最简二次根式表示)
A.13 B. C.10 D.5
二、填空题
1.某地有一长方形鱼塘,已知鱼塘的长是宽的2倍,它的面积是1600m2,鱼塘的宽是_______m.(结果用最简二次根式)
2.已知等腰直角三角形的直角边的边长为 ,那么这个等腰直角三角形的周长是________.(结果用最简二次根式)
三、综合提高题
1.若最简二次根式 与 是同类二次根式,求m、n的值.
2.同学们,我们以前学过完全平方公式a2 2ab+b2=(ab)2,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的正数(包括0)都可以看作是一个数的平方,如3=( )2,5= ( )2,你知道是谁的二次根式呢?下面我们观察:
( -1)2=( )2-21 +12=2-2 +1=3-2
反之,3-2 =2-2 +1=( -1)2
3-2 =( -1)2
= -1
求:(1) ;
(2) ;
(3)你会算 吗?
(4)若 = ,则m、n与a、b的关系是什么?并说明理由.
答案:
一、1.A 2.C
二、1.20 2.2+2
三、1.依题意,得 , ,
所以 或 或 或
2.(1) = = +1
(2) = = +1
(3) = = -1
(4) 理由:两边平方得a2 =m+n2
所以
查字典数学网