导读:在大家心中一道好的数学题是什么标准?千万个人就有千万种标准,反正在查字典数学网小编末宝心中只有一个标准:每个年级的知识要点都能涵盖。都说一鱼几吃,这题啊也是如此,要一题三作,每个年级的学生都可以考到对应的知识点。今天,小编末宝就给大家带来了这样的一道题,赶紧来看看吧。
(2016烟台)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:
(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?
(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入-投入总成本)
小编末宝插播一句:要先自己思考
【分析】
(1)设甲型号的产品有x万只,则乙型号的产品有(20-x)万只,根据销售收入为300万元列出方程,求出方程的解即可得到结果;
(2)设安排甲型号产品生产y万只,则乙型号产品生产(20-y)万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y的范围,再根据利润=售价-成本列出W与y的一次函数,根据y的范围确定出W的最大值即可.
【解答】
解:(1)设甲型号的产品有x万只,则乙型号的产品有(20-x)万只,
根据题意得:18x+12(20-x)=300,
解得:x=10,
则20-x=20-10=10,
则甲、乙两种型号的产品分别为10万只,10万只;
(2)设安排甲型号产品生产y万只,则乙型号产品生产(20-y)万只,
根据题意得:13y+8.8(20-y)≤239,
解得:y≤15,
根据题意得:利润W=(18-12-1)y+(12-8-0.8)(20-y)=1.8y+64,
当y=15时,W最大,最大值为91万元.
此题考查了一元一次方程的应用,以及一次函数的应用,弄清题中的等量关系是解本题的关键。更多数学试题,敬请期待查字典数学网。
末宝带你游数学: