北师大版高一上册数学教学计划模板:集合的基本运算_课题研究 - 查字典数学网
数学北师大版高一上册数学教...
首页>数学教研>课题研究>北师大版高...

北师大版高一上册数学教学计划模板:集合的基本运算

2016-09-12 收藏

丰富多彩的学期生活随之而来,查字典数学网为大家编辑了高一上册数学教学计划模板,供大家参考,希望能帮助大家.

整体设计

教学分析

课本从学生熟悉的集合出发,结合实例,通过类比实数加法运算引入集合间的运算,同时,结合相关内容介绍子集和全集等概念.在安排这部分内容时,课本继续注重体现逻辑思考的方法,如类比等.

值得注意的问题:在全集和补集的教学中,应注意利用图形的直观作用,帮助学生理解补集的概念,并能够用直观图进行求补集的运算.

三维目标

1.理解两个集合的并集与交集、全集的含义,掌握求两个简单集合的交集与并集的方法,会求给定子集的补集,感受集合作为一种语言,在表示数学内容时的简洁和准确,进一步提高类比的能力.

2.通过观察和类比,借助Venn图理解集合的基本运算.体会直观图示对理解抽象概念的作用,培养数形结合的思想.

重点难点

教学重点:交集与并集、全集与补集的概念.

教学难点:理解交集与并集的概念,以及符号之间的区别与联系.

课时安排

2课时

教学过程

第1课时

作者:尚大志

导入新课

思路1.我们知道,实数有加法运算,两个实数可以相加,例如5+3=8.类比实数的加法运算,集合是否也可以“相加”呢?教师直接点出课题.

思路2.请同学们考察下列各个集合,你能说出集合C与集合A,B之间的关系吗?

(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6};

(2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数}.

引导学生通过观察、类比、思考和交流,得出结论.教师强调集合也有运算,这就是我们本节课所要学习的内容.

思路3.(1)①如图1甲和乙所示,观察两个图的阴影部分,它们分别同集合A、集合B有什么关系?

图1

②观察集合A,B与集合C={1,2,3,4}之间的关系.

学生思考交流并回答,教师直接指出这就是本节课学习的课题:集合的基本运算.

(2)①已知集合A={1,2,3},B={2,3,4},写出由集合A,B中的所有元素组成的集合C.

②已知集合A={x|x>1},B={x|x<0},在数轴上表示出集合A与B,并写出由集合A与B中的所有元素组成的集合C.

推进新课

新知探究

提出问题

(1)通过上述问题中集合A,B与集合C之间的关系,类比实数的加法运算,你发现了什么?

(2)用文字语言来叙述上述问题中,集合A,B与集合C之间的关系.

(3)用数学符号来叙述上述问题中,集合A,B与集合C之间的关系.

(4)试用Venn图表示A∪B=C.

(5)请给出集合的并集定义.

(6)求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?

请同学们考察下面的问题,集合A,B与集合C之间有什么关系?

①A={2,4,6,8,10},B={3,5,8,12},C={8};

②A={x|x是国兴中学2012年9月入学的高一年级女同学},B={x|x是国兴中学2012年9月入学的高一年级男同学},C={x|x是国兴中学2012年9月入学的高一年级同学}.

(7)类比集合的并集,请给出集合的交集定义,并分别用三种不同的语言形式来表达.

活动:先让学生思考或讨论问题,然后再回答,经教师提示、点拨,并对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路,主要引导学生发现集合的并集和交集运算并能用数学符号来刻画,用Venn图来表示.

讨论结果:(1)集合之间也可以相加,也可以进行运算,但是为了不和实数的运算相混淆,规定这种运算不叫集合的加法,而是叫做求集合的并集.集合C叫集合A与B的并集.记为A∪B=C,读作A并B.

(2)所有属于集合A或属于集合B的元素组成了集合C.

(3)C={x|x∈A,或x∈B}.

(4)如图1所示.

(5)一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集.其含义用符号表示为A∪B={x|x∈A,或x∈B},用Venn图表示,如图1所示.

(6)集合之间还可以求它们的公共元素组成的集合,这种运算叫求集合的交集,记作A∩B,读作A交B.①A∩B=C,②A∪B=C.

(7)一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.

其含义用符号表示为:

A∩B={x|x∈A,且x∈B}.

用Venn图表示,如图2所示.

图2

应用示例

例1 集合A={x|x<5 b="{x|x">0},C={x|x≥10},则A∩B,B∪C,A∩B∩C分别是什么?

活动:学生先思考集合中元素的特征,明确集合中的元素.将集合中元素利用数形结合在数轴上找到,那么运算结果寻求就易进行.这三个集合都是用描述法表示的数集,求集合的并集和交集的关键是找出它们的公共元素和所有元素.

解:因为A={x|x<5 b="{x|x">0},C={x|x≥10},在数轴上表示,如图3所示,所以A∩B={x|00},A∩B∩C= .

变式训练

1.设集合A={x|x=2n,n∈N*},B={x|x=2n,n∈N},求A∩B,A∪B.

解:对任意m∈A,则有m=2n=2•2n-1,n∈N*,因n∈N*,故n-1∈N,有2n-1∈N,那么m∈B,即对任意m∈A有m∈B,所以A⊆B.

而10∈B但10 A,即A B,那么A∩B=A,A∪B=B.

2.求满足{1,2}∪B={1,2,3}的集合B的个数.

解:满足{1,2}∪B={1,2,3}的集合B一定含有元素3,B={3};还可含1或2其中一个,有{1,3},{2,3};还可含1和2,即{1,2,3},那么共有4个满足条件的集合B.

3.设集合A={-4,2,a-1,a2},B={9,a-5,1-a},已知A∩B={9},求a.

解:∵A∩B={9},则9∈A,a-1=9或a2=9.

∴a=10或a=±3.

当a=10时,a-5=5 ,1-a=-9;

当a=3时,a-1=2不合题意;

当a=-3时,a-1=-4不合题意.

故a=10.此时A={-4,2,9,100},B={9,5,-9},满足A∩B={9}.

4.设集合A={x|2x+1<3},B={x|-3

A.{x|-3

C.{x|x>-3} D.{x|x<1}

解析:集合A={x|2x+1<3}={x|x<1},

观察或由数轴得A∩B={x|-3

答案:A

例2 设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0,a∈R},若A∩B=B,求a的值.

活动:明确集合A,B中的元素,教师和学生共同探讨满足A∩B=B的集合A,B的关系.集 合A是方程x2+4x=0的解组成的集合,可以发现,B⊆A,通过分类讨论集合B是否为空集来求a的值.利用集合的表示 法来认识集合A,B均是方程的解集,通过画Venn图发现集合A,B的关系,从数轴上分析求得a的值.

解:由题意得A={-4,0}.

∵A∩B=B,∴B⊆A.

∴B= 或B≠ .

当B= 时,即关于x的方程x2+2(a+1)x+a2-1=0无实数解,

则Δ=4(a+1)2-4(a2-1)<0,解得a<-1.

当B≠ 时,若集合B仅含有一个元素,则Δ=4(a+1)2-4(a2-1)=0,解得a=-1,

此时,B={x|x2=0}={0}⊆A,即a=-1符合题意.

若集合B含有两个元素,则这两个元素是-4,0,

即关于x的方程x2+2(a+1)x+a2-1=0的解是-4,0.

则有-4+0=-2(a+1),-4×0=a2-1.

解得a=1,则a=1符合题意.

综上所得,a=1或a≤-1.

变式训练

1.已知非空集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},则能使A⊆(A∩B)成立的所有a值的集合是什么?

解:由题意知A⊆(A∩B),即A⊆B,A非空,利用数轴得 解得6≤a≤9,即所有a值的集合是{a|6≤a≤9}.

2.已知集合A={x|-2≤x≤5},集合B={x|m+1≤x≤2m -1},且A∪B=A,试求实数m的取值范围.

分析:由A∪B=A得B⊆A,则有B= 或B≠ ,因此对集合B分类讨论.

解:∵A∪B=A,∴B⊆A.

又∵A={x|-2≤x≤5}≠ ,∴B= ,或B≠ .

当B= 时,有m+1>2m-1,∴m<2.

当B≠ 时,观察图4:

图4

由数轴可得 解得2≤m≤3.

知能训练

课本本节练习1,2,3.

【补充练习】

1.设集合A={3,5,6,8},B={4,5,7,8},

(1)求A∩B,A∪B.

(2)用适当的符号(⊇,⊆)填空:

A∩B________A,B________A∩B,A∪B________A,A∪B________B,A∩B________A∪B.

解:(1)因A,B的公共元素为5,8,故两集合的公共部分为5,8,

则A∩B={3,5,6,8}∩{4,5,7,8}={5,8}.

又A,B两集合的所有相异元素为3,4,5,6,7,8,故A∪B={3,4,5,6,7,8}.

(2)由Venn图可知

A∩B⊆A,B⊇A∩B,A∪B⊇A,A∪B⊇B,A∩B⊆A∪B.

2.设A={x|x<5},B={x|x≥0},求A∩B.

解:因x<5及x≥0的公共部分为0≤x<5,

故A∩B={x|x<5}∩{x|x≥0}={x|0≤x<5}.

3.设A={x|x是锐角三角形},B={x|x是直角三角形},求A∩B.

解:因三角形按角分类时,锐角三角形和直角三角形彼此孤立,故A,B两集合没有公共部分.

所以A∩B={x|x是锐角三角形}∩{x|x是钝角三角形}= .

4.设A={x|x>-2},B={x|x≥3},求A∪B.

解:在数轴上将A,B分别表示出来,得A∪B={x|x>-2}.

5.设A={x|x是平行四边形},B={x|x是矩形},求A∪B.

解:因矩形是平行四边形,故由A及B的元素组成的集合为A∪B,A∪B={x|x是平行四边形}.

6.已知M={1},N={1,2},设A={(x,y)|x∈M,y∈N},B={(x,y)|x∈N,y∈M},求A∩B,A∪B.

分析:M,N中的元素是数,A,B中的元素是平面内的点集,关键是找其元素.

解:∵M={1},N={1,2},∴A={(1,1),(1,2)},B={(1,1),(2,1)},故A∩B={(1,1)},A∪B={(1,1),(1,2),(2,1)}.

7.若A,B,C为三个集合,A∪B=B∩C,则一定有()

A.A⊆C B.C⊆A C.A≠C D.A=

解析:思路一:∵(B∩C)⊆B,(B∩C)⊆C,A∪B=B∩C,

∴A∪B⊆B,A∪B⊆C.∴A⊆B⊆C.∴A⊆C.

思路二:取满足条件的A={1},B={1,2},C={1,2,3},排除B,D,

令A={1,2},B={1,2},C={1,2},则此时也满足条件A∪B=B∩C,

而此时A=C,排除C.

答案:A

拓展提升

观察:(1)集合A={1,2},B={1,2,3,4}时,A∩B,A∪B这两个运算结果与集合A,B的关系;

(2)当A= 时,A∩B,A∪B这两个运算结果与集合A,B的关系;

(3)当A=B={1,2}时,A∩B,A∪B这两个运算结果与集合A,B的关系.

由(1)(2)(3)你发现了什么结论?

图5

活动:依据集合的交集和并集的含义写出运算结果,并观察与集 合A,B的关系.用Venn图来发现运算结果与集合A,B的关系.(1)(2)(3)中的集合A,B均满足A⊆B,用Venn图表示,如图5所示,就可以发现A∩B,A∪B与集合A,B的关系.

解:A∩B=A⇔A⊆B⇔A∪B=B.

用类似方法,可以得到集合的运算性质,归纳如下:

A∪B=B∪A,A⊆(A∪B),B⊆(A∪B);A∪A=A,A∪ =A,A⊆B⇔A∪B=B;

A∩B=B∩A;(A∩B)⊆A,(A∩B)⊆B;A∩A=A;A∩ = ;A⊆B⇔A∩B=A.

课堂小结

本节主要学习了:

1.集合的交集和并集.

2.通常借助于数轴或Venn图来求交集和并集.

作业

1.课外思考:对于集合的基本运算,你能得出哪些运算规律?

2.请你举出现实生活中的一个实例,并说明其并集、交集和补集的现实含义.

3.书面作业:课本习题1.1,A组,6,7,8.

设计感想

由于本节课内容比较容易接受,也是历年高考的必考内容之一,所以在教学设计上注重加强练习和拓展课本内容.设计中通过借助于数轴或Venn图写出集合运算的结果,这是突破本节教学难点的有效方法.

第2课时

作者:赵冠明

导入新课

问题:①分别在整数范围和实数范围内解方程(x-3)(x-3)=0,其结果会相同吗?

②若集合A={x|0

学生回答后,教师指明:在不同的范围内集合中的元素会有所不同,这个“范 围”问题就是本节学习的内容,引出课题.

推进新课

新知探究

提出问题

①用列举法表示下列集合:

A={x∈Z|(x-2) =0};

B={x∈Q|(x-2) =0};

C={x∈R|(x-2) =0}.

②问题①中三个集合相等吗?为什么?

③由此看,解方程时要注意什么?

④问题①中,集合Z,Q,R分别含有所解方程时所涉及的全部元素,这样的集合称为全集,请给出全集的定义.

⑤已知全集U={1,2,3},A={1},写出全集中不属于集合A的所有元素组成的集合B.

⑥请给出补集的定义.

⑦用Venn图表示∁UA.

活动:组织学生充分讨论、交流,使学生明确集合中的元素,提示学生注意集合中元素的范围.

讨论结果:①A={2},B=2,-13,C=2,-13,2.

②不相等,因为三个集合中的元素不相同.

③解方程时,要注意方程的根在什么范围内,同一个方程,在不同的范围其解会有所不同.

④一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记为U.

⑤B={2,3}.

⑥对于一个集合A,全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集.

集合A相对于全集U的补集记为∁UA,即∁UA={x|x∈U,且x A}.

⑦如图6所示,阴影表示补集.

上文为大家整理的高一上册数学教学计划模板,大家仔细阅读了吗?祝大家生活愉快。




查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限