2016-08-24
收藏
简介:
三角函数与平面向量
三角函数的图象与性质
1. 掌握正弦函数、余弦函数、正切函数的图象与性质;会用“五点法”作出正弦函数及余弦函数的图象;掌握函数y=Asin(ωx+φ)的图象及性质.
2. 高考试题中,三角函数题相对比较传统,位置靠前,通常是以简单题形式出现.因此在本讲复习中要注重三角知识的基础性,特别是要熟练掌握三角函数的定义、三角函数图象的识别及其简单的性质(周期、单调、奇偶、最值、对称、图象平移及变换等).
3. 三角函数是每年高考的必考内容,多数为基础题,难度属中档偏易.这几年的高考中加强了对三角函数定义、图象和性质的考查.在这一讲复习中要重视解三角函数题的一些特殊方法,如函数法、待定系数法、数形结合法等的训练.
1. 函数y=2sin2-1是最小正周期为________的________(填“奇”或“偶”)函数.
2.函数f(x)=-cosx在[0,+∞)内的零点个数为________.
3.函数f(x)=2cos2x+sin2x的最小值是________.
4.定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x∈时,f(x)=sinx,则f的值为________.
【例1】 设函数f(θ)=sinθ+cosθ,其中角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.
(1) 若点P的坐标是,求f(θ)的值;
(2) 若点P(x,y)为平面区域上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.
【例2】 函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)的部分图象如图所示.
(1) 求f(0)的值;
(2) 若0<φ<π,求函数f(x)在区间上的取值范围.
【例3】 已知函数f(x)=sin(ωx+φ)-cos(ωx+φ)(0<φ<π,ω>0)为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为.
(1) 求f的值;
(2) 将函数y=f(x)的图象向右平移个单位后,得到函数y=g(x)的图象,求函数g(x)的单调递减区间.
【例4】 已知函数f(x)=2sin2-cos2x-1,x∈R.
(1) 求f(x)的最小正周期;
(2) 若h(x)=f(x+t)的图象关于点对称,且t∈(0,π),求t的值;
(3) 当x∈时,不等式|f(x)-m|<3恒成立,求实数m的取值范围.
1. (2011·江西)已知角θ的顶点为坐标原点,始边为x轴的正半轴.若P(4,y)是角θ终边上一点,且sinθ=-,则y=________.
2.(2010·全国)函数f(x)=sin-2sin2x的最小正周期是________.
3.(2009·全国)函数y=sincos的最大值为________.
4.(2010·广东)已知函数f(x)=sinωx+cosωx(ω>0),y=f(x)的图象与直线y=2的两个相邻交点的距离等于π,则f(x)的单调递增区间是________.
(2011·四川)已知函数f(x)=2sinxcosx+2cos2x-1(x∈R).
(1) 求函数f(x)的最小正周期及在区间上的最大值和最小值;
(2) 若f(x0)=,x0∈,求cos2x0的值.
5.(2009·福建)已知函数f(x)=sin(ωx+φ),其中ω>0,|φ|<.
(1) 若coscosφ-sinπsinφ=0,求φ的值;
(2) 在(1)的条件下,若函数f(x)的图象的相邻两条对称轴之间的距离等于,求函数f(x)的解析式;并求最小正实数m,使得函数f(x)的图象向左平移m个单位后所对应的函数是偶函数.
(2009·重庆)(本小题满分13分)设函数f(x)=sin-2cos2+1.
(1) 求f(x)的最小正周期;
(2) 若函数y=g(x)与y=f(x)的图象关于直线x=1对称,求当x∈时,y=g(x)的最大值.
解:(1) f(x)=sinxcos-cosxsin-cosx
=sinx-cosx(3分)
=sin,(5分)
故f(x)的最小正周期为T ==8.(7分)
(2) (解法1)在y=g(x)的图象上任取一点(x,g(x)),它关于x=1的对称点为(2-x,g(x)).
由题设条件,点(2-x,g(x))在y=f(x)的图象上,从而
g(x)=f(2-x)=sin=sin=cos.(10分)
当0≤x≤时,≤x+≤,因此y=g(x)在区间上的最大值为g(x)max=cos=.(13分)
(解法2)因区间关于x=1的对称区间为,且y=g(x)与y=f(x)的图象关于x=1对称,故y=g(x)在上的最大值为y=f(x)在上的最大值,
由(1)知f(x)=sin,
当≤x≤2时,-≤x-≤,
因此y=g(x)在上的最大值为g(x)max=sin=.(13分)
第7讲 三角函数的图象与性质
1. 若
【答案】 -8 解析:令tanx=t∈(1,+∞),y=,y′(t)=
得t=时y取最大值-8.
2. 已知函数f(x)=2cos2x+sin2x.
(1) 求f的值;
(2) 求f(x)的最大值和最小值.
解:(1) f=2cos+sin2=-1+=-.
(2) f(x)=2(2cos2x-1)+(1-cos2x)=3cos2x-1,x∈R.
因为cosx∈[-1,1],所以当cosx=±1时,f(x)取最大值2;当cosx=0时,f(x)取最小值-1.
基础训练
1. π 奇 解析:y=-cos=-sin2x.
2. 1 解析:在[0,+∞)内作出函数y=,y=cosx的图象,可得到答案.
3. -+1 解析:f(x)=2cos2x+sin2x=sin+1.
4. - 解析:f=f=f=sin=-.
例题选讲
例1 解:(1) 根据三角函数定义得sinθ=,cosθ=,∴ f(θ)=2.(本题也可以根据定义及角的范围得角θ=,从而求出 f(θ)=2).
(2) 在直角坐标系中画出可行域知0≤θ≤,f(θ)=sinθ+cosθ=2sin,∴ θ=0,f(θ)min=1;θ=,f(θ)max=2.
(注: 注意条件,使用三角函数的定义; 一般情况下,研究三角函数的周期、最值、单调性及有关计算等问题时,常可以先将函数化简变形为y=Asin(ωx+φ)的形式)
例2 解:(1)由题图可知:A=,=π-=,ω=2,
2×+φ=2kπ+,φ=2kπ+,k∈Z,
f(0)=sin=.
(2) φ=,f(x)=sin.
因为0≤x≤,所以≤2x+≤π,所以0≤sin≤1.
即f(x)的取值范围为[0,].
(注:本题主要考查正弦、余弦、正切函数及y=Asin(ωx+φ)的图像与性质以及诱导公式,运用数形结合思想,属于中档题)
变式训练 已知A为△ABC的内角,求y=cos2A+cos2的取值范围.
解: y=cos2A+cos2=+
=1++
=1+=1+cos.
∵ A为三角形内角,∴ 0
∴ y=cos2A+cos2的取值范围是.
例3 解:(1) f(x)=sin(ωx+φ)-cos(ωx+φ)
=2
=2sin.
因为f(x)为偶函数,
所以对x∈R,f(-x)=f(x)恒成立,
因此sin=sin.
即-sinωxcos+cosωxsin
=sinωxcos+cosωxsin,
整理得sinωxcos=0.
因为ω>0,且x∈R,所以cos=0.
又因为0<φ<π,故φ-=.
所以f(x)=2sin=2cosωx.
由题意得=2×,所以ω=2.
故f(x)=2cos2x.
因此f=2cos=.
(2) 将f(x)的图象向右平移个单位后,得到f的图象,
所以g(x)=f=2cos=2cos.
当2kπ≤2x-≤2kπ+π(k∈Z),
即kπ+≤x≤kπ+(k∈Z)时,g(x)单调递减,
因此g(x)的单调递减区间为(k∈Z).
例4 解:(1)函数可化为f(x)=-cos-cos2x=2sin,故f(x)的最小正周期为π.
(2) h(x)=2sin.令2×+2t-=kπ,k∈Z.
又t∈(0,π),故t=或.
(3) 当x∈时,2x-∈, ∴ f(x)∈[1,2].
|f(x)-m|<3,即f(x)-3
变式训练 设函数f(x)=-cos2x-4tsincos+4t3+t2-3t+4,x∈R,其中|t|≤1,将f(x)的最小值记为g(t).
(1) 求g(t)的表达式;
(2) 讨论g(t)在区间(-1,1)内的单调性并求极值.
解:(1) f(x)=-cos2x-4tsincos+4t3+t2-3t+4
=sin2x-2tsinx+4t3+t2-3t+3
=(sinx-t)2+4t3-3t+3.
由于(sinx-t)2≥0,|t|≤1,故当sinx=t时,f(x)达到其最小值g(t),即
g(t)=4t3-3t+3.
(2) g′(t)=12t2-3=3(2t+1)(2t-1),-1
列表如下:
t
-
g′(t)
+
0
-
0
+
g(t)
极大值
极小值
由此可见,g(t)在区间和上单调增,在区间上单调减,极小值为g=2,极大值为g=4.
高考回顾
1. —8 解析:sinθ==-,解得y=-8或8(舍).
2. π 解析:f(x)=sin-2sin2x=sin-.
3. 解析: y=cosx=sin+.
4. ,k∈Z 解析: f(x)=sinωx+cosωx(ω>0)=2sin.
∵ 周期为π,∴ ω=2,∴ f(x)=2sin.
2kπ-≤2x+≤2kπ+,即kπ-≤x≤kπ+,k∈Z.
5. 解: (1) 由f(x)=2sinxcosx+2cos2x-1,得
f(x)=(2sinxcosx)+(2cos2x-1)=sin2x+cos2x=2sin.
所以函数的最小正周期为T==π.
因为x∈,所以2x+∈.
所以2x+∈,即x∈时,函数f(x)为增函数,而在x∈时,函数f(x)为减函数,所以f=2sin=2为最大值,f=2sin=-1为最小值.
(2) 由(1)知,f(x0)=2sin.
又由已知f(x0)=,则sin=.
因为x0∈,则2x0+∈.因此cos<0,
所以cos=-,于是cos2x0=cos,
=coscos+sinsin
=-×+×=.
6. 解:(1) 由coscosφ-sinπsinφ=0得coscosφ-sinsinφ=0
即cos=0,又|φ|<,∴ φ=.
(2) 由(1)得f(x)=sin,依题意,=,又T=,故ω=3,
∴ f(x)=sin,函数的图像向左平移m个单位后对应的函数为g(x)=sin,g(x)是偶函数,当且仅当3m+=kπ+(k∈Z),即m=+(k∈Z),从而最小正实数m=.
新苏教版小学三年级上册数学《第二单元概述和课时安排》教案板书教学设计
沪教版三年级上册《年月日》数学教案
沪教版三年级上册《乘乘除除》数学教案
新苏教版小学三年级上册数学《7笔算乘法练习》教案板书教学设计
新苏教版小学三年级上册数学《2 两、三位数乘一位数的估算》教案板书教学设计
新苏教版小学三年级上册数学《8乘法的复习》教案板书教学设计
沪教版三年级上册《数学广场——周期问题》数学教案
新苏教版小学三年级上册数学《2 周长是多少》教案板书教学设计
沪教版三年级上册《米与厘米》数学教案
新苏教版小学三年级上册数学《4 两、三位数乘一位数(不进位)》教案板书教学设计
沪教版三年级上册《长方形与正方形的面积(1)》数学教案
沪教版三年级上册《平年与闰年》数学教案
新苏教版小学三年级上册数学《5 两、三位数乘一位数(进位) 第二课时》教学感悟
沪教版三年级上册《除法的应用》数学教案
沪教版三年级上册《两位数被一位数除(三)》数学教案
沪教版一年级上册《讲讲算算(一)》数学教案
沪教版三年级上册《千米的认识》数学教案
沪教版三年级上册《单价、数量、总价》数学教案
沪教版三年级上册《乘整十数、整百数(第二课时)》数学教案
新苏教版小学三年级上册数学《1 长方形和正方形 》教案板书教学设计
沪教版三年级上册《长方形与正方形的面积(2)》数学教案
沪教版三年级上册《图形的拼嵌》数学教案
沪教版三年级上册《看图列式》数学教案
沪教版三年级上册《面积》数学教案
沪教版三年级上册《制作年历》数学教案
沪教版三年级上册《乘整十数、整百数(第一课时)》数学教案
新苏教版小学三年级上册数学《千克和克》教案板书教学设计
沪教版三年级上册《数学广场——植树问题》数学教案
沪教版三年级上册《三角形的认识》数学教案
沪教版三年级上册《三角形的分类》数学教案
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |