高考数学立体几何中的策略思想和方法_考前复习 - 查字典数学网
数学高考数学立体几何中的策...
首页>学习园地>考前复习>高考数学立...

高考数学立体几何中的策略思想和方法

2016-08-19 收藏

近年来,高考对立体几何的考查仍然注重于空间观点的建立和空间想象能力的培养。题目起点低,步步升高,给不同层次的学生有发挥能力的余地。大题综合性强,有几何组合体中深层次考查空间的线面关系。因此,高考复习应在抓好基本概念、定理、表述语言的基础上,以总结空间线面关系在几何体中的确定方法入手,突出数学思想方法在解题中的指导作用,并积极探寻解答各类立体几何问题的有效的策略思想及方法。

一、领悟解题的基本策略思想

高考改革稳中有变。运用基本数学思想如转化,类比,函数观点仍是考查中心,选择好典型例题,在基本数学思想指导下,归纳一套合乎一般思维规律的解题模式是受学生欢迎的,学生通过熟练运用,逐步内化为自己的经验,解决一般基本数学问题就会自然流畅。

二、探寻立体几何图形中的基面

立体几何图形必须借助面的衬托,点、线、面的位置关系才能显露地“立”起来。在具体的问题中,证明和计算经常依附于某种特殊的辅助平面即基面。这个辅助平面的获取正是解题的关键所在,通过对这个平面的截得,延展或构造,纲举目张,问题就迎刃而解了。

三、重视模型在解题中的应用

学生学习立体几何是从认识具体几何模型到抽象出空间点、线、面的关系,从而培养空间想象能力。而数学问题中许多图形和数量关系都与我们熟悉模型存在着某种联系。它引导我们以模型为依据,找出起关键作用的一些关系或数量,对比数学问题中题设条件,突出特性,设法对原图形补形,拼凑、构造、嵌入、转化为熟知的、形象的、直观的模型,利用其特征规律获取优解。

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限