2016-08-08
收藏
数学是一个要求大家严谨对待的科目,有时一不小心一个小小的小数点都会影响最后的结果。下文就为大家送上了集合课后练习题,希望大家认真对待。
一、填空题.(每小题有且只有一个正确答案,5分×10=50分)
1、已知全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )
2 . 如果集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是 ( )
A.0 B.0 或1 C.1 D.不能确定
3. 设集合A={x|1
A.{a|a ≥2} B.{a|a≤1} C.{a|a≥1}. D.{a|a≤2}.
5. 满足{1,2,3} M {1,2,3,4,5,6}的集合M的个数是 ( )
A.8 B.7 C.6 D.5
6. 集合A={a2,a+1,-1},B={2a-1,| a-2 |, 3a2+4},A∩B={-1},则a的值是( )
A.-1 B.0 或1 C.2 D.0
7. 已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则 ( )
A.I=A∪B B.I=( )∪B C.I=A∪( ) D.I=( )∪( )
8. 设集合M= ,则 ( )
A.M =N B. M N C.M N D. N
9 . 集合A={x|x=2n+1,n∈Z}, B={y|y=4k±1,k∈Z},则A与B的关系为 ( )
A.A B B.A B C.A=B D.A≠B
10.设U={1,2,3,4,5},若A∩B={2},( UA)∩B={4},( UA)∩( UB)={1,5},则下列结论正确的是( )
A.3 A且3 B B.3 B且3∈A C.3 A且3∈B D.3∈A且3∈B
二.填空题(5分×5=25分)
11 .某班有学生55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有 人.
12. 设集合U={(x,y)|y=3x-1},A={(x,y)| =3},则 A= .
13. 集合M={y∣y= x2 +1,x∈ R},N={y∣ y=5- x2,x∈ R},则M∪N=_ __.
14. 集合M={a| ∈N,且a∈Z},用列举法表示集合M=_
15、已知集合A={-1,1},B={x|mx=1},且A∪B=A,则m的值为
三.解答题.10+10+10=30
16. 设集合A={x, x2,y2-1},B={0,|x|,,y}且A=B,求x, y的值
17.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0} ,A∩B=B, 求实数a的值.
18. 集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.
(1)若A∩B=A∪B,求a的值;
(2)若 A∩B,A∩C= ,求a的值.
19.(本小题满分10分)已知集合A={x|x2-3x+2=0},B={x|x2-ax+3a-5=0}.若A∩B=B,求实数a的取值范围.
20、已知A={x|x2+3x+2 ≥0}, B={x|mx2-4x+m-1>0 ,m∈R}, 若A∩B=φ, 且A∪B=A, 求m的取值范围.
21、已知集合 ,B={x|2
参考答案
C B A D C D C D C B
26 {(1,2)} R {4,3,2,-1} 1或-1或0
16、x=-1 y=-1
17、解:A={0,-4} 又
(1)若B= ,则 ,
(2)若B={0},把x=0代入方程得a= 当a=1时,B=
(3)若B={-4}时,把x=-4代入得a=1或a=7.
当a=1时,B={0,-4}≠{-4},∴a≠1.
当a=7时,B={-4,-12}≠{-4}, ∴a≠7.
(4)若B={0,-4},则a=1 ,当a=1时,B={0,-4}, ∴a=1
综上所述:a
18、.解: 由已知,得B={2,3},C={2,-4}.
(1)∵A∩B=A∪B,∴A=B
于是2,3是一元二次方程x2-ax+a2-19=0的两个根,由韦达定理知:
解之得a=5.
(2)由A∩B ∩ ,又A∩C= ,得3∈A,2 A,-4 A,由3∈A,
得32-3a+a2-19=0,解得a=5或a=-2?
当a=5时,A={x|x2-5x+6=0}={2,3},与2 A矛盾;
当a=-2时,A={x|x2+2x-15=0}={3,-5},符合题意.
∴a=-2.
19、解:A={x|x2-3x+2=0}={1,2},
由x2-ax+3a-5=0,知Δ=a2-4(3a-5)=a2-12a+20=(a-2)(a-10).
(1)当2
(2)当a≤2或a≥10时,Δ≥0,则B≠ .
若x=1,则1-a+3a-5=0,得a=2,
此时B={x|x2-2x+1=0}={1} A;
若x=2,则4-2a+3a-5=0,得a=1,
此时B={2,-1} A.
综上所述,当2≤a<10时,均有A∩B=B.
20、解:由已知A={x|x2+3x+2 }得 得 .(1)∵A非空 ,∴B= ;(2)∵A={x|x }∴ 另一方面, ,于是上面(2)不成立,否则 ,与题设 矛盾.由上面分析知,B= .由已知B= 结合B= ,得对一切x 恒成立,于是,有 的取值范围是
21、∵A={x|(x-1)(x+2)≤0}={x|-2≤x≤1},
B={x|1
∵ ,(A∪B)∪C=R,
∴全集U=R。
∴ 。
∵ ,
∴ 的解为x<-2 x="">3,
即,方程 的两根分别为x=-2和x=3,
由一元二次方程由根与系数的关系,得
b=-(-2+3)=-1,c=(-2)×3=-6
查字典数学网为大家提供的集合课后练习题,,大家仔细做了吗?希望够帮助到大家。
基本初等函数3
平面向量数量积的物理背景及其含义1
平面向量数量积的物理背景及其定义2
高一数学流程图复习课
高一数学导数在研究函数中的应用
平面向量的正交分解及其坐标表示
高一数学柱体、锥体、台体的表面积与体积1
离散型随机变量及其分布列2
高一数学任意角和弧度制
高一数学流程图与顺序结构
平面向量数量积的坐标表示4
复数代数形式的乘除运算
方法选讲
立体几何2
高一数学对数函数的性质的应用
高一数学下册复习教案
秦九韶算法1
简单组合体的三视图
高一数学指数函数的性质和图像
复数代数形式的加减运算及其几何意义
直线与平面平行、平面与平面平行的判定
直线与平面、平面与平面垂直的性质
高一数学柱、锥、台、球的结构特征1
点、线、面的位置关系
高一数学交集与并集3
平面向量1
复数的几何意义
高一数学柱、锥、台、球的结构特征2
高一数学平面向量的数量积及其运算律
四种命题之间的相互关系及真假判断
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |