2016-07-01
收藏
导读:四则运算法则指:如果两个函数都有极限,那么这两个函数的和、差、积、商组成的函数的极限分别等于这两个函数的极限的和、差、积、商(作为除数的函数的极限不能为零)。法则本身很简单,但有些函数求极限往往不能直接利用法则,需要先对函数做某些恒等变形或化简,常用的变形或化简方法主要有分式的分子或分母分解因式、分式
的约分或通分、分子或分母的有理化、三角函数的恒等变形等。利用单调有界准则求极限,首先讨论数列的单调性和有界性,再解方程可求出极限。总之,极限的求法很多,但如果在解题过程中能根据算式的特点注意使用适当的解题方法,则可以化难为易,使问题得到圆满解决,并可提高解题效率。
关键词:数列,函数,极限,求法
极限思想贯穿于整个微积分的课程之中,掌握好求极限的方法是十分必要的。由于极限的求法众多,且灵活性强,因此有必要对极限的求法加以归纳总结,本文就师范数学微积分的内容总结了如下12种方法:
一、利用极限四则运算法则求极限
四则运算法则指:如果两个函数都有极限,那么这两个函数的和、差、积、商组成的函数的极限分别等于这两个函数的极限的和、差、积、商(作为除数的函数的极限不能为零)。法则本身很简单,但有些函数求极限往往不能直接利用法则,需要先对函数做某些恒等变形或化简,常用的变形或化简方法主要有分式的分子或分母分解因式、分式的约分或通分、分子或分母的有理化、三角函数的恒等变形等。
例 1.
解:原式= ===-
例2.
解:原式=
二、利用两个重要极限求极限
两个重要极限为:,或 它们的扩展形式为:,或,利用两个重要极限求极限,往往需要作适当的变换,将所求极限的函数变形为重要极限或重要极限的扩展形式,再利用重要极限的结论和极限的四则运算法则求极限。
例3.
解:原式= 。
例4.
解:原式= 。
例5.
解:原式=
三、利用函数的连续性求极限:
由函数f(x)在x0点连续定义知,,由于初等函数在定义区间内处处连续,所以求初等函数在定义区间内任意点处的极限值,只要求其函数在该点处的函数值,因此可直接代入计算。
例6.
解:因为是函数的一个连续点,
所以 原式= 。
例7.
解:原式==
四、利用导数的定义求极限
若函数f(x)在x0点可导,则,利用这个定义,若所求极限的函数具有函数导数的定义式或可化为导数的定义式,则可利用导数的定义求极限。
例8. 已知存在,求
解:原式=
=
=a[=2a
五、利用无穷小的性质求极限
有限个无穷小的和是无穷小,有界函数与无穷小乘积是无穷小。一般要记住:。。
例9.求
解: 因为, 是有界函数
所以=0
六、利用等价无穷小代换求极限
在求两个函数的积或商的极限时,若能利用三角公式或代数公式进行变形,最后变成两个极限为零的因式之比时(两个无穷小之比),则可以用它们的等价无穷小来代替,求出极限。等价无穷小主要有:~~~~~~() ,当前面每个函数中的自变量x换成时(),仍有上面的等价关系成立。
例10.
解:~,~,
∴ 原式= 。
例11.
解:原式=
七、利用单调有界准则求极限
利用单调有界准则求极限,首先讨论数列的单调性和有界性,再解方程可求出极限。
例12. 已知,求
解:易证:数列单调递增,且有界(02),由准则极限存在,设 。对已知的递推公式 两边求极限,得:
,解得:或(不合题意,舍去),所以 。。
八、利用夹逼准则求极限
对于数列,若为三个数列,且满足:(1);(2) ,; 则极限一定存在,且极限值也是a ,即。对于函数,若在某个过程中,恒有g(x)f(x)h(x),而且limg(x)=limh(x)=A,则limf(x)=A。在求解过程中一般要将所求极限的函数进行适当放大或缩小,得到两个有相同极限的函数,然后利用夹逼准则求出其极限值。
例13. 求
解: 易见:
因为 ,
所以由准则得:
九、利用洛必达法则求极限
洛必达法则为:假设当自变量x趋近于某一定值(或无穷大)时,函数和满足:(1)和的极限都是0或都是无穷大;(2)和都可导,且 的导数不为0;(3)存在(或是无穷大),则极限也一定存在,且等于,即= 。。利用洛必达法则求极限,由于分类明确,规律性强,且可连续进行运算,可以简化一些较复杂的函数求极限的过程,但运用时需注意条件。 例14. 求 解:原式===0 例15. 求 解:原式= 十、利用微分中值定理求极
限
拉格朗日中值定理是微分学重要的基本定理,它利用函数的局部性质来研究函数的整体性质,利用这个定理可以求某些函数的极限.
例16. 求.
解: 设,在[]上用拉格朗日中值定理,得
(其中),
故当时,,可知:原式= = .
十一、利用泰勒公式(麦克劳林公式)求极限
设函数f(x)在x=0的某个邻域内有定义,且f(n)(0)存在,则对该邻域内任意点x有如下表示式成立
此式称为的具有皮亚诺余项的阶麦克劳林公式,利用麦克劳林公式可以求解一些用其它方法难以处理的极限。这种方法的关键是确定展开的函数及展开的阶数。
例17. 求极限 .
解: ,
十二、利用定积分求极限
若遇到关于n的某一和式的极限能够将其表示为某个可积函数的积分和式的极限,那么就能用定积分来求极限,关键在于根据所给和式确定被积函数以及积分区间。
例18. 求
解:原式=
总之,极限的求法很多,但如果在解题过程中能根据算式的特点注意使用适当的解题方法,则可以化难为易,使问题得到圆满解决,并可提高解题效率。
参考文献:
[1] 《大学数学》微积分(一) 萧树铁主编高等教育出版社 2003年4月第二版
[2]《数学分析讲义》(上册)刘玉琏主编 高等教育出版社,2003年7月第四版
盘点2016高考数学一轮复习八大窍门
2015高考数学基础学习方法及技巧
2015高考数学复习重点及策略
考生必备:精选66个高考数学易错点复习
高考数学第一轮复习:指导思想和案例分析
盘点2016高考数学复习智慧和考试策略
2015年精选高考文科数学复习分析及建议
2015年精选高考数学复习提纲汇总
2015年高考数学知识点:排列、组合和概率
2015高考数学三轮复习指导
2015年高考数学知识点:反比例函数定义
高考数学一轮复习七大重点
2015年高考数学复习指导:平面向量
2015高考数学第一轮复习:如何提高复习的效率
2015年高考数学复习指导:不等式的基本性质
2015高考文科数学易错题:导数的应用
2015年高考数学复习重点之复数
2015年最新高考数学复习方法精编
高考状元浅谈高考数学复习心得
2015年高考数学复习重点之极限
2015年高考数学知识点:任意角的三角函数
2015年高考数学复习指导:解析几何
2015年高考数学第一轮复习攻略:须注意5大问题
2015年高考数学知识点:三角函数
2015高考数学解析几何题型复习
2015年高考数学复习指导:数列
高考高分生经验分享:高三数学复习如何稳步提高
2015高考理科数学易错题总结
2015高考倒计时7天:高考数学最后冲刺复习
高考数学第一轮复习:紧盯函数
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |