2016-07-01
收藏
导读:根据给出的封闭曲面的形式判断积分区间,化三重积分为三次积分. 关键词:积分区域,最大投影,柱坐标,球面坐标 1.给出的曲面形如,. 令,得到一个关于的方程,是封闭曲面围成的区域在XOY平面上的最大投影,也是满足的范围,然后根据所得到的的关系判断的大小. 例1 化三重积分为三次
积分,积分区域是由曲面及围成的闭区域.
解 根据有,因为得到的是最大投影,所以满足的是,根据该式可知,则
.
2.给出的曲面形如
(1)若C=0,关于的积分一般是;(2)若C0,关于的积分一般是;根据需要有时会给出的函数,来确定的取值范围。。。。
例2 化三重积分为三次积分,积分区域是由曲面及围成的闭区域.
分析 (根据情况(1))依题意有,则有,再有,得出闭区域在平面上的最大投影区域,则
2.卢方芳(1982-),女,硕士
例3 化三重积分为三次积分,积分区域是由曲面及围成的闭区域.
分析给出的曲面形如,.故闭区域在平面上的最大投影区域即,再根据情况(2)有,则.
3. 给出形如或曲面围成的闭区域
形如曲面围成的闭区域可以用柱坐标变换.一般的的最高次项是一次, 的最高次项是二次都可使用柱坐标变换.
形如z=曲面围成的闭区域可以用球面坐标变换. 一般,的最高次项都是二次可使用球面坐标变换.
上面的两种坐标变换是固定的变换形式,可以代回给出的的曲面方程判断新的参数的范围.
例4计算,其中是由曲面及围成的闭区域.
分析 先判断闭曲面的最大投影,令,则有,故闭区域在平面上的最大投影区域,根据得出,而根据所给的曲面方程形式,可以使用柱坐标变换,
令 ,对于本题则有
解
.
例5计算,其中是由球面若围成的闭区域.
分析 本题可以用球面坐标
则有,
解
.
例6计算,其中是由曲面围成的闭区域.
分析 本题显然可以使用球面坐标
带入曲面方程有
解
.
以上例题均来自参考文献[1],本文介绍在空间图像不好想象的情况下,可以根据给出封闭曲面的函数形式,来划分积分区间,从而将三重积分化为累次积分.
参考文献:
[1] 同济大学应用数学系主编.高等数学(五版)[M].高教出版社,2002.
数学合作学习的形式
恰当的提问与有效的追问
如何让数学走进生活
小学数学新课标的理解
重视小学生的全面发展
只有创造才能有收获
如何打造适合自己的高效课堂
使自己的教学闪耀着睿智的光彩
对广泛领域的知识和理解的探究
什么样的教学才是有效的呢
如何改正学生做题粗心的毛病
如何与家长进行联系、沟通
如何设计小学数学课堂教学结构
观看了课堂教学视频 谈谈我的收获
小学数学课堂教学设计策略
课堂教学之自己的学习体会
谈谈开拓课堂教学的新思路
小学数学教师的基本素质
新课程改革的研究与实践
面向全体学生 关注学生差异
浅谈怎样把生活融入数学教学
什么是激发学生学习兴趣的最佳方式
浅谈小学数学教学中学生学习兴趣的培养
案例展示和评析后的收获
如何提高小学生课堂效率
提高课堂教学的有效性
学习教学相关策略 反思了工作中的不足
高效数学课堂提问的几个有效做法
对教育教学工作有什么新的理解
体现教师的自身价值
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |