2016-06-29
收藏
一、问题导入
对于比较简单的不等式,我们可以直接想出它们的解集,但是对于比较复杂的不等式,要直接想出解集来就困难了.因些,有必要讨论怎样解不等式.
和学习一元一次方程先讨论等式的性质一样,我们先来探索不等式有什么性质.
二、不等式的性质
做一做:用“”、“”填空:
(1)53,5+23+2,5-23-2;
(2)-13,-1+23+2,-1-33-3;
(3)62,6×52×5,6×(-5)2×(-5);
(4)-23,(-2)×63×6,(-2)×(-6)3×(-6).
观察(1)(2),类比等式的性质,你发现了什么规律?
性质1不等式两边加(或减)同一个数(或式子),不等号的方向不变.
即:如果a>b,那么a±c>b±c.
观察(3),类比等式的性质,你发现了什么规律?
性质2不等式两边乘(或除以)同一个正数,不等号的方向不变.
即:如果a>b,c>0,那么ac>bc(或a/c>b/c).
观察(4),类比等式的性质,你发现了什么规律?
性质3不等式两边乘(或除以)同一个负数,不等号的方向改变.
即:如果a>b,c<0,那么ac<bc(或a/c<b/c).
思考:①比较上面的性质2与性质3,看看它们有什么区别?
性质2的两边乘或除的是一个正数,不等号的方向没有变;而性质3的两边乘或除的是一个负数,不等号的方向改变了.
②比较等式的性质与不等式的性质,它们有什么异同?
等式的性质与不等式的性质1、2,除了一个说“等式仍然成立”,一个说“不等号方向不变”的说法不同外,其余都一样;而不等式的性质3说“不等号方向改变”,这与等式的性质说法不同.
三、例题
例1利用不等式的性质填“”,“”:
(1)若ab,则2a2b;
(2)若-2y10,则y-5;
(3)若ab,c0,则ac-1bc-1;
(4)若ab,c0,则ac+1bc+1.
分析:不等式的两边发生了怎样的变化?填“”或“”的依据是什么
系统抽样教案2
含绝对值不等式的解法教案
2016届中考数学第一轮复习导学案26
2016届中考数学第一轮复习导学案27
多边形的面积和面积变换教案
二项式定理学案2
二元一次方程组教案
直线与平面的位置关系教案7
基本不等式学案1
椭圆及其标准方程教案
椭圆的简单性质的应用教案
二元一次不等式与平面区域教案2
2016届中考数学第一轮复习导学案28
基本不等式学案2
古代数学中的算法案例教案
2016届中考数学第一轮复习导学案33
分类与讨论教案
简单计数问题教案
归纳法证明不等式1教案
二元一次不等式(组)与平面区域学案
二元一次不等式与平面区域教案1
构造函数法在不等式证明中运用教案
2016届中考数学第一轮复习导学案30
二面角教案
一元二次不等式及其解法教案4
不等式复习学案
抛物线的简单性质教案
直线的截距问题探讨教案
二项式定理学案1
简单的逻辑联结词教案
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |