2013-07-04
收藏
不少数学试题所考查的知识点并不难,但是解题时必须从相反方向考虑(称为“逆向思维”),同学们必须重视培养这种有用的能力。
一、数学概念的反问题
例1若化简|1-x|--的结果为2x-5,求x的取值范围。
分析:原式=|1-x|-|x-4|
根据题意,要化成:x-1-(4-x)=2x-5
从绝对值概念的反方向考虑,推出其条件是:
1-x≤0,且x-4≤0
∴x的取值范围是:1≤x≤4
二、代数运算的逆过程
例2有四个有理数:3,4-6,10,将这四个数进行加减乘除四则运算(每个数用且只用一次),使结果为24。请写出一个符合要求的算式。
分析:不妨先设想3×8=24,再考虑怎样从4,-6,10算出8,这样就找到一个所求的算式:
3(4-6+10)=24
类似的,还有:4-(-6×10)÷3;
10-(-6×3+4);3(10-4)-(-6)等。
三、逆向应用不等式性质
例3若关于x的不等式(a-1)x>a2-2的解集为x<2,求a的值。
分析:根据不等式性质3,从反方向进行分析,得:
a-1<0,且a2-2=2(a-1)
∴所求a值为a=0。
四、逆向分析分式方程的检验
例4已知方程---=1有增根,求它的增根。
分析:这个分式方程的增根可能是x=1或x=-1
原方程去分母并整理,得x2+mx+m-1=0
如果把x=1代入,能求出m=3;
如果把x=-1代入,则不能求出m;
∴m的值为3,原方程的增根是x=1。
五、图形变换的反问题
例5△ABC中,AB<AC,一刀剪切后可以拼成等腰梯形,请确定剪切线。
分析:我们曾经把梯形剪切后拼成三角形,就是使梯形的一部分绕一条腰的中点旋转180°,本题正好相反。由此得到启发,再应用等腰梯形的性质,得到如下做法:
作AD⊥BC,垂足为D点,在BC上截取DE=BD,连结AE,则∠AEB=∠B。
过AC中点M作MP∥AE,交BC于P,MD就是所求的剪切线。剪下△MPC,可以拼成等腰梯形ABPQ。
高三数学模拟题(1)
华南师范大学附中高三数学试题
江苏省新海高级中学高三年级月考
高三第二次教学质量检测-文科数学
广东吴川市川西中学高三向量与立几专题训练
函数中档题训练
高三周练卷(5)
江苏省泰兴中学第二次模拟考试
高三周练卷(6)
湖南省八所省示范性中学联考文科数学试卷(II)
高三期末调研考试数学试题(文史)
高三第二次月考数学理科试卷
湖北省十一校大联考
高三第三次调查测试
湖北省安陆一中高三数学易错题重组集锦(二)
哈十四中高三第四次月考文科数学试题
海门市锡类中学二轮专题立体几何同步练习
高三周练卷(7)
江苏省泰兴中学第二学期期中考试
杭州西湖高级中学高三3月月考数学试卷(文科)
江苏省成化高中高三第四次月考数学试卷
华南师大附中培优试题3
田家炳实验中学高三年级第二次综合测验
高三年级调研考试数学(文)试卷
第二学期数学联考试卷
华南师大附中培优试题2
江苏省扬州市第一学期联考
广州市华附、省实高三联考试题及答案
高三数学试卷
高三十月份月考试卷(文)
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |