2013-07-04
收藏
在与三角形有关的角时,同学们会遇到许多求角的大小的问题,其中有些题目看似简单,却很难入手,有些题目因思考不全面而造成漏解。怎么办?要知道,思想是的灵魂,是解决问题的金钥匙。本文就谈谈数学思想在求解角的度数问题中的运用,希望对同学们解题有所帮助。
1、整体法
例1 如图1,若点P为△ABC中∠ABC、∠ACB的角平分线的交点,求∠BPC∠A的度数。
图1
分析:解本题的关键在于从整体着眼,利用∠PBC+∠PCB建立∠A和∠BPC的联系。
解:∵∠PBC=∠ABC
∠PCB=∠ACB
∠BPC=180°-(∠PBC+∠PCB)
∴∠BPC-∠A
2、方程法
例2 如图2,在△ABC中,∠A:∠ABC:∠ACB=3:4:5,BD、CE分别是AC、AB边上的高,BD、CE相交于点H,求∠BHC的度数。
图2
分析:根据三角形的内角和定理,结合已知条件可先求出∠A、∠ABC、∠ACB的度数。在△BHC中,还需求出∠DBC和∠ECB的度数。
解:设∠A=3x度,则∠ABC=4x度,∠ACB=5x度。
所以。
解得x=15,即∠A=45°,∠ABC=60°,∠ACB=75°
在△DBC中,由∠BDC=90°,可知△DBC是直角三角形。
所以∠DBC=90°-75°=15°
在△ECB中,由∠CEB=90°,可知△ECB是直角三角形。
所以∠ECB=90°-60°=30°
在△BHC中,∠BHC=180°-15°-30°=135°
点评:由于∠A:∠ABC:∠ACB=3:4:5,设∠A=3x度,则∠ABC=4x度,∠ACB=5x度。再根据三角形内角和定理,就可以得到一个关于x的方程,即。从而求得∠A、∠ABC、∠ACB的度数。这种方法会经常用到,要注意掌握。
3、分类法
例3 已知非直角三角形ABC中,∠A=45°,高BD和高CE所在的直线相交于点H,求∠BHC的度数。
分析:三角形的形状不同,高线的交点的位置也不同。当三角形为锐角三角形时,高的交点在其内部;当三角形为钝角三角形时,高的交点在其外部。故应分两种情况讨论。
解:
(1)设△ABC为锐角三角形(如图3)。
图3
∴BD、CE是△ABC的高,∠A=45°,
∴∠ABD=90°-45°=45°
∴∠BHC=∠ABH+∠BEH
=45°+90°
=135°
(2)设△ABC为钝角三角形(如图4)
图4
∴H是△ABC的两条高所在直线的交点,∠A=45°,
∴∠DCH=∠ECA
=90°-45°
=45°
∴∠BHC=90°-∠DCH
=90°-45°
初中政治 =45°
综上可知,∠BHC的大小是135°或45°。
4、构造法
例4 如图5,BE是∠ABD的平分线,CF是∠ACD的平分线,BE与CF交于点G,若∠BDC=140°,∠BGC=110°,求∠A的度数。
图5
分析:若把∠BDC、∠BGC、∠A看成是三角形的内角,则必须构造三角形。结合图形不难发现,连接BC即可。
解:连接BC。
∵∠DBC+∠DCB+∠BDC=180°
∠BDC=140°
∴∠DBC+∠DCB=40°
又∠BGC+∠GBC+∠GCB=180°
∠BGC=110°
∴∠GBD+∠GCD=180°-110°-40°=30°
∵∠GBD∠ABD
∠GCD=∠ACD
∴∠ABD+∠ACD=2(∠GBD+∠GCD)=60°
∴∠A=180°-(∠ABC+∠ACB)
=180°?60°?40°
=80°。
点评:此题还可延长CD交BE于一点,请同学们尝试一下这种解法。在进行与角有关的计算时,为了能使用三角形内角和定理及内角与外角的关系,常常需要构造三角形或三角形的外角,这时需要添加某些线段或延长某些线段。
七年级数学不等式的性质2
七年级数学幂的乘方
七年级数学直角三角形的判定
七年级数学相交线与平行线
七年级数学二元一次方程组应用
七年级数学全等三角形复习
七年级数学不等式的性质1
七年级数学能追上小明吗
七年级数学实际问题与一元一次方程
七年级数学长方体和正方体的表面积
七年级数学解二元一次方程组复习
七年级数学实际问题与一元一次不等式2
七年级数学运用公式法分解因式
七年级数学整式的加减
七年级数学两平行线间的距离
七年级数学认识事件的可能性
七年级数学可能性2
七年级数学探索三角形全等的条件5
七年级数学因式分解1
七年级数学数据在我们周围2
七年级数学多项式乘多项式
七年级数学多边形的内角
七年级数学全等三角形
七年级数学统计图的选用
七年级数学一元一次不等式组的解法
七年级数学探索三角形全等的条件6
七年级数学长方体和正方体的表面积2
七年级数学实际问题与一元一次不等式1
七年级数学单项式与单项式相乘
七年级数学二元一次方程组复习
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |