2013-07-04
收藏
证明直线与圆相切主要有以下两种:
一、根据切线的判定定理
经过半径的外端并且垂直于这条半径的直线是圆的切线 证明直线与圆相切的两种方法。
当已知直线与圆有公共点时,常用此法。辅助线是连结公共点和圆心,只要设法证明直线与半径垂直即可。
例1. (2004年江苏省淮安市题)
已知:如图1,在△ABC中,∠BAC的平分线AD交△ABC的外接圆⊙O于点D,交BC于点G。
图1
(1)连结CD,若AG=4,DG=2,求CD的长;(解略)
(2)过点D作EF∥BC,分别交AB、AC的延长线于点E、F。求证:EF与⊙O相切。
证明:(2)连结OD,由∠1=∠2,
得,则OD⊥BC
所以
因为EF∥BC,所以∠BCD=∠CDF
从而
即EF⊥OD,所以EF与⊙O相切。
例2. (2002年湖北省黄冈市中考题)
如图2,BE是⊙O的直径,点A在BE的延长线上,弦PD⊥BE,垂足为C,连结OD,且∠AOD=∠APC。
(1)求证:AP是⊙O的切线。
(2)略。
图2
证明:连结OP,因为PD⊥BE,OP=OD
所以∠POB=∠DOB,而∠APD=∠DOB
所以∠POB=∠APD
由PD⊥BE得:∠POB+∠OPC=90°
即∠APD+∠OPC=90°
所以AP是⊙O的切线
二、根据直线与圆的位置关系
若圆心到直线的距离等于圆的半径,则直线与圆相切。
当题设中不能肯定直线与圆有公共点时,常用此法。辅助线是过圆心作该直线的垂线段,只要设法证明垂线段等于半径即可。
例3. (2003年甘肃省中考题)
如图3,Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心、r为半径作圆,当r=2.4时,AB与圆有怎样的位置关系?为什么?
图3
解:作CD⊥AB,垂足为D,则
由CD·AB=AC·BC得:
即AB与圆相切。
例4. 如图4,AB是⊙O的直径,AC⊥l,BD⊥l,C、D为垂足,且AC+BD=AB,求证:直线l与⊙O相切。
图4
证明:过O作OE⊥l,E为垂足,则
OE∥AC∥BD,又AO=BO
所以
而,则
即垂线段OE等于圆的半径 证明直线与圆相切的两种方法,所以直线l是⊙O的切线。
初中数学一元一次方程根的知识点归纳精讲
四年级数学上册期末试卷分析
趣味数学及答案
2013-2014学年八年级上数学期末考试试卷分析
台阶数
中考数学复习指导:了解定位建立错题备忘录
2015中考数学复习指导:数学公式
生活中的百分数 教学设计
六年级数学试卷分析
2015数学知识点因式分解的步骤
2015初中数学知识点圆柱体体积公式
数学笑话:四舍五入
初中数学函数万能诱导公式大全
巧得入场卷
二元一次方程组知识点归纳及解题技巧汇总
初中数学圆的性质知识点归纳
小学三年级数学下册教学计划(北师大版)
小学数学六年级上册教案——“轴对称图形”教学设计
数学笑话:家父酒量
数学笑话:解题
图形与变换 教学设计
数学笑话:结果
2015年中考数学复习指导:填空题解法指导
数学笑话:概率
圆柱和圆锥 教学设计资料
小学数学六年级上册教案——《圆的认识》教学设计
座次排位推理
数学笑话:十一点半
趣味故事:填歇后语,猜成语
2015中考数学复习指导:选择题答题技巧
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |