14年高三必修数学同步训练导数在研究函数中的应用_题型归纳 - 查字典数学网
数学14年高三必修数学同步...
首页>学习园地>题型归纳>14年高三...

14年高三必修数学同步训练导数在研究函数中的应用

2016-06-13 收藏

高中是重要的一年,大家一定要好好把握高中,查字典数学网小编为大家整理了14年高三必修数学同步训练,希望大家喜欢。

1.与直线2x-6y+1=0垂直,且与曲线f(x)=x3+3x2-1相切的直线方程是()

A.3x+y+2=0 B.3x-y+2=0

C.x+3y+2=0 D.x-3y-2=0

解析:设切点的坐标为(x0,x30+3x20-1),

则由切线与直线2x-6y+1=0垂直,

可得切线的斜率为-3,

又f(x)=3x2+6x,故3x20+6x0=-3,

解得x0=-1,于是切点坐标为(-1,1),

从而得切线的方程为3x+y+2=0 .

答案:A

2.设f(x),g(x)在[a,b]上可导,且f(x)(x),则当a

A.f(x)g(x)

B.f(x)

C.f(x)+g(a)g(x)+f(a)

D.f(x)+g(b)g(x)+f(b)

解析:∵f(x)-g(x)0,(f(x)-g(x))0,

f(x)-g(x)在[a,b] 上是增函数,

当a

f(x)+g(a)g(x)+f(a).

答案:C

3.若函数f(x) =x3-6bx+3b在(0,1)内有最小值,则实数b的取值范围是()

A.(0,1) B.(-,1)

C.(0,+) D.0,12

解析:f(x)在(0,1)内有最小值,即f(x)在(0,1)内有极小值,f(x)=3x2-6b,

由题意,得函数f(x)的草图如图,

f00,f10,即-6b0,3-6b0,

解得0

答案:D

4.若关于x的函数f(x)=x3-3x2-a在-12,4上有三个不同的零点,则实数a的取值范围是

()

A.(-4,0) B.(-4,+)

C.-78,0 D.-78,6

解析:f(x)在-12,4上有三个零点等价于g(x)=x3-3x2与y=a在-12,4 上有三个交点,∵g(x)=3x2-6x=3x(x-2),x-12,0和x(2,4]上g(x)x(0,2)上g(x)0,g(x)极大=g(0)=0,g(x)极小=g(2)=-4,g-12=-78,g(4)=6,g(x)图象如上图所示,-780.

答案:C

5.已知函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围是________.

解析:f(x)=3x2-3a=3(x2-a),

显然a0,f(x)=3(x+a)(x-a),

由已知条件0

答案:(0,1)

6.(理科)函数f(x)=x(x-m)2在x=1处取得极小值,则实数m=________.

解析:f(x)=x3-2mx2+m2x,f(x)=3x2-4mx+m2,

由已知f(1)=0,即3-4m+m2=0,解得m=1或m=3.

当m=1时,f(x)=3x2-4x+1=(3x-1)(x-1),

当m=3时,f(x)=3x2-12x+9=3(x-1)(x-3),

则m=3应舍去.

答案:1

6.(文科)若二次函数f(x)=ax2+bx+c(a0)的图象和直线y=x无交点,现有下列结论:

①方程f[f(x)]=x一定没有实数根;

②若a0,则不等式f[f(x)]x对一切实数x都成立;

③若a0,则必存在实数x0,使f[f(x0)]

④若a+b+c=0,则不等式f[f(x)]

⑤函数g(x)=ax2-bx+c的图象与直线y=-x也一定没有交点.

其中正确的结论是________(写出所有正确结论的编号).

解析:因为函数f(x)的图象与直线y=x没有交点,所以f(x)0)或f(x)

答案:①②④⑤


查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限