2016-06-03
收藏
高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理了高三数学集合与常用逻辑用语,希望大家喜欢。
高三数学章末综合测试题(1)集合与常用逻辑用语
一、选择题:本大题共12小题,每小题5分,共60分.
1.设全集U={1,2,3,4,5},集合A= {1,a-2,5},UA={2,4},则a的值为()
A.3 B.4
C.5 D.6
解析:由UA={2,4},可得A={1,3,5},a-2=3,a=5.
答案:C
2.设全体实数集为R,M={1,2},N={1,2,3,4},则(RM)N等于() 新课标第一]
A.{4} B.{3,4}
C.{2,3,4} D.{1,2,3,4 }
解析:∵M={1,2},N={1,2,3,4},(RB)N={3,4}.
答案:B
3.如图所示,U是全集,M、N、S是U的子集,则图中阴影部分所示的集合是()
A.(UMUN)S
B.(U(MN))S
C.(UNUS)M
D.(UMUS)N
解析:由集合运算公式及Venn图可知A正确.
答案:A
4.已知p:2+3=5,q:54,则下列判断错误的是()
A.p或q为真,p为假
B.p且q为假,q为真
C.p且q为假,p为假
D.p且q为真,p或q为真
解析:∵p为真,p为假.
又∵q为假,q为真.p且q为真,p或q为真.
答案:D
A.0 B.1
C.2 D.4
答案:C
6.已知集合A={(x,y)|y=lg(x+1)-1},B={(x,y)|x=m},若AB=,则实数m的取值范围是()
A.m B.m1
C.m D.m-1
解析:AB=即指函数y=lg(x+1)-1的图像与直线x=m没有交点,结合图形可得m-1.
答案:D
7.使不等式2x2-5x-30成立的一个 充分不必要条件是()
A.x B.x0或x2
C.x{-1,3,5} D.x-12或x3
解析:依题意所选选项能使不等式2x2-5x-30成立,但当不等式2x2-5x-30成立时,却不一定能推出所选选项.由于不等式2x2-5x-30的解为x3,或x-12.
答案:D
8.命题p:不等式xx-1xx-1的解 集为{x|0
A.p真q假 B.p且q为真
C.p或q为假 D.p假q真
解析:命题p为真,命题q也为真.事实上,当0
答案:B
9.已知命题p:x0R,使tanx0=1,命题q:x2-3x+20的解集是{x|1
①命题p且q是真命题;
②命题p且(q)是假命题;
③命题(p)或q是真命题;
④命题(p)或(q)是假命题.
其中正确的是()
A.②③ B.①②④
C.①③④ D.①②③④
解析:命题p:x0R,使tanx0=1为真命题,
命题q:x2-3x+20的解集是{x|1
p且q是真命题,p且(q)是假命题,
(p)或q是真命题,(p)或(q)是假命题,
故①②③④都正确.
答案:D
10.在命题若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c的逆命题、否命题、逆否命题中结论成立的是()
A.都真 B.都假
C.否命题真 D.逆否命题真
解析:对于原命题:若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c,这是一个真命题,所以其逆否命题也为真命题;但其逆命题是:若{x|ax2+bx+c,则抛物线y=ax2+bx+c的开口向下是一个假命题,因 为当不等式ax2+bx+c0的解集非空时,可以有a0,即抛物线开口可以向上,因此否命题也是假命题.故选D.
答案:D
11.若命题x,y(0,+),都有(x+y)1x+ay为真命题,则正实数a的最小值是()
A.2 B.4
C.6 D.8
解析:(x+y)1x+ay=1+a+axy+yx1+a+2a=(a+1)29,所以a4,故a的最小值为4.
答案:B
12.设p:y=cx(c0)是R上的单调递减函数;q:函数g(x)=lg(2cx2+2x+1)的值域为R.如果p且q为假命题,p或q为真命题,则c的取值范围是()
A.12,1 B.12,+
C.0,12[1,+) D.0,12
解析:由y=cx(c0) 是R上的单调递减函数,
得0
由g(x)=lg(2cx2+2x+1)的值域为R,
得当c=0时,满足题意.
当c0时,由c0,=4-8c0,得0
所以q:012.
由p且q为假命题,p或q为真命题可 知p、q一假一真.
当p为真命题,q为假命题时,得12
当p为假命题时,c1,q为真命题时,012.
故此时这样的c不存在.
综上,可知12
答案:A
第Ⅱ卷 (非选择 共90分)
二、填空题:本大题共4个小题,每小题5分,共20分.
13.已知命题p:xR,x3-x2+10,则命题p是____________________.
解析:所给命题是特称命题,而特称命题的否定是全称命题,故得结论.
答 案:xR,x3-x2+10
14.若命题xR,2x2-3ax+9为假命题,则实数a的取值范围是__________.
解析:∵xR,2x2-3ax+9为假命题,
xR,2x2-3ax+9为真命题.
=9a2-420,解得-2222.
故实数a的取值范围是[-22,22].
答案:[-22,22]
15.已知命题p:对xR,mR使4x-2x+1+m=0,若命题p是假命题,则实数m的取值范围是__________.
解析:命题p是假命题,即命题p是真命题,也就是关于x的方程4x-2x+1+ m=0有实数解,即m=-(4x-2x+1).令f(x)=-(4x-2x+1),由于f(x)=-( 2x-1)2+1,所以当xR时f(x)1,因此实数m的取值范围是(-,1].
答案:(-,1]
16.已知集合A={xR|x2-x0},函数f(x)=2-x+a(xA)的值域为B.若BA,则实数a的取值范围是__________.
解析:A={xR|x2-x0}=[0 ,1].
∵函数f(x)=2-x+a在[0,1]上为减函数,
函数f(x)=2-x+a(xA)的值域B=12+a,1+a.
∵BA,
12+a0,1+a1.解得-120.
故实数a的取值范围是-12,0.
答案:-12,0
三、解答题:本大题共6小题,共70分.
17.(10分)记函数f(x)=lg(x2-x-2)的定义域为集合A,函数g(x)=3-|x|的定义域为集合B.
(1)求AB和A
(2)若C={x|4x+p0},CA,求实数p的取值范围.
解析:(1)依题意,得A={x|x2-x-20}={x|x-1,或x2},
B={x|3-|x|0}={x|-33},
AB={x|-3-1,或2
AB=R.
(2)由4x+p0,得x-p4,而CA,
-p4-1.p4.
18.(12分)已知命题p:关于x的不等式x2-2ax+40对一切xR恒成立;命题q:函数y=log(4-2a)x在(0,+)上递减.若pq为真,pq为假,求实数a的取值范围.
解析:命题p为真,则有4a2-160,解得-2
命题q为真,则有01,解得32
由q为真,pq为假可知p和q满足:
p真q真、p假q真、p假q假.
而当p真q假时,应有-2
取其补集得a-2,或a32,
此即为当q为真,pq为假时实数a的取值范围,故a(-,-2]32,+
19.(12分)已知命题p:|x-8|2,q:x-1x+10,r:x2-3ax+2a20).若命题r是命题p的必要不充分条件,且r是q的充分不必要条件,试求a的取值范围.
解析:命题p即:{x|6
命题q即:{x|x
命题r即:{x|a
由于r 是p的必要而不充分条件,r是q的充分而不必要条件,结合数轴应有16,2a10.解得56,
故a的取值范围是[5,6].
20.(12分)已知集合A={x|2-a2+a},B={x|x2-5x+40}.
(1)当a=3时,求AB,A(
(2)若A B=,求实数a的取值范围.
解析:(1)∵a=3,A={x|-15}.
由x2-5x+40,得x1,或x4,
故B={x|x1,或x4}.
AB={x|-11或45}.
A(UB)={x|-15}{x|1
={x|-15}.
(2)∵A=[2-a,2+a],B=(-,1][4,+),且AB=,
2-a1,2+a4,解得a1.
21.(12分)已知函数f(x)=2x2-2ax+b,f(-1)=-8.对xR,都有f(x)f(-1)成立.记集合A={x|f(x)0},B={x||x-t|1}.
(1)当t=1时,求(RA)
(2)设命题p:AB=,若p为真命题,求实数t 的取值范围.
解析:由题意知(-1,-8)为二次函数的顶点,
f(x)=2(x+1)2-8=2(x2+2x-3).
由f(x)0,即x2+2x-30得x-3,或x1,
A={x|x-3,或x1}.
(1)∵B={x||x-1|1}={x|02}.
(RA)B={x|-31}{x|02}
={x|-32}.
(2)由题意知,B={x|t-1t+1},且AB=,
t-1-3,t+1t-2,t0,
实数t的取值范围是[-2,0].
22.(12分)已知全集U=R,非空集合A=xx-2x-3a-10,B=xx-a2-2x-a0.
(1)当a=12时,求(UB)
(2)命题p:xA,命题q:xB,若q是p的必要条件,求实数a的取值范围.
解析:(1)当a=12时,
A=x2
B=x12
UB=xx12,或x94.
(UB)A=x9452.
(2)若q是p的必要条件,
即pq,可知AB,
由a2+2a,得B={x|a
当3a+12,即a13时,A={x|2
a2,a2+23a+1,解得13
当3a+1=2,即a=13时,A=,符合题意;
当3a+12, 即a13时,A={x|3a+1
a3a+1,a2+22,解得-12
综上,a-12,3-52.
这篇高三数学集合与常用逻辑用语就为大家分享到这里了。希望对大家有所帮助!
华东师九下函数及其图象——实践与探索课件
28.3.2圆柱和圆锥的侧面展开图课件华师大版九年级下
华师大九年级26.2.5求二次函数的函数关系式
《圆》知识点复习课件ppt(华师大版九年级下)
华师大九年级26.3.3实践与探索
华东师大九年级数学§26.1.1二次函数课件
华师大版九年级下册第27章证明复习课课件
圆和圆的位置关系课件(华师大版九年级下)
华师大版九下27.2用推理的方法研究三角形复习课件
二次函数的概念课件ppt(华师大版九年级下)
华师大九年级26.3.5实践与探索面积问题
华师大九年级下27.3逆命题、逆定理课件
圆的对称性(二)课件华师大版九年级下
华师大九下27.2.4用推理的方法研究线段的垂直平分线课件
华师大版九下27.2.3用推理的方法研究角的平分线课件
27.2二次函数的图象与性质课件华师大九年级下
华师大版九下28.3利用统计图表作决策课件
28.2圆与圆的位置关系课件华师大版九年级下
华师大九年级下27.3.3等腰梯形
26.1二次函数的图象华师大版九年级下
华师大九年级第27章证明复习2
华师大九年级第27章证明复习1
二次函数最值课件(华师大版九年级下)
圆的认识课件华师大版九年级下
初中数学应用型问题专题讲解课件(华师大版)
直线与圆的位置关系课件华师大版九年级下
30.3借助调查作决策课件华师大版九年级下
华师大九年级26.3.6实践与探索
华师大九年级下27.3.2用推理方法研究四边形
华师大版九下28.1借助媒体做决策课件
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |