2016-05-27
收藏
高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理了高二数学重点,希望大家喜欢。
1.在△ABC中,已知a=4,b=6,C=120,则边c的值是()
A.8 B.217
C.62 D.219
解析:选D.根据余弦定理,c2=a2+b2-2abcos C=16+36-246cos 120=76,c=219.
2.在△ABC中,已知a=2,b=3,C=120,则sin A的值为()
A.5719 B.217
C.338 D.-5719
解析:选A.c2=a2+b2-2abcos C
=22+32-223cos 120=19.
c=19.
由asin A=csin C得sin A=5719.
3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为__________.
解析:设底边边长为a,则由题意知等腰三角形的腰长为2a,故顶角的余弦值为4a2+4a2-a222a2a=78.
答案:78
4.在△ABC中,若B=60,2b=a+c,试判断△ABC的形状.
解:法一:根据余弦定理得
b2=a2+c2-2accos B.
∵B=60,2b=a+c,
(a+c2)2=a2+c2-2accos 60,
整理得(a-c)2=0,a=c.
△ABC是正三角形.
法二:根据正弦定理,
2b=a+c可转化为2sin B=sin A+sin C.
又∵B=60,A+C=120,
C=120-A,
2sin 60=sin A+sin(120-A),
整理得sin(A+30)=1,
A=60,C=60.
△ABC是正三角形.
课时训练
一、选择题
1.在△ABC中,符合余弦定理的是()
A.c2=a2+b2-2abcos C
B.c2=a2-b2-2bccos A
C.b2=a2-c2-2bccos A
D.cos C=a2+b2+c22ab
解析:选A.注意余弦定理形式,特别是正负号问题.
2.(2014年合肥检测)在△ABC中,若a=10,b=24,c=26,则最大角的余弦值是()
A.1213 B.513
C.0 D.23
解析:选C.∵ca,c所对的角C为最大角,由余弦定理得cos C=a2+b2-c22ab=0.
3.已知△ABC的三边分别为2,3,4,则此三角形是()
A.锐角三角形 B.钝角三角形
C.直角三角形 D.不能确定
解析:选B.∵42=1622+32=13,边长为4的边所对的角是钝角,△ABC是钝角三角形.
4.在△ABC中,已知a2=b2+bc+c2,则角A为()
A. B.6
C.2 D.3或23
解析:选C.由已知得b2+c2-a2=-bc,
cos A=b2+c2-a22bc=-12,
又∵0
5.在△ABC中,下列关系式
①asin B=bsin A
②a=bcos C+ccos B
③a2+b2-c2=2abcos C
④b=csin A+asin C
一定成立的有()
A.1个 B.2个
C.3个 D.4个
解析:选C.由正、余弦定理知①③一定成立.对于②由正弦定理知sin A=sin Bcos C+sin Ccos B=sin(B+C),显然成立.对于④由正弦定理sin B=sin Csin A+sin Asin C=2sin Asin C,则不一定成立.
6.在△ABC中,已知b2=ac且c=2a,则cos B等于()
A.14 B.34
C.24 D.23
解析:选B.∵b2=ac,c=2a,
b2=2a2,
cos B=a2+c2-b22ac=a2+4a2-2a22a2a
=34.
二、填空题
7.在△ABC中,若A=120,AB=5,BC=7,则AC=________.
解析:由余弦定理,
得BC2=AB2+AC2-2ABACcosA,
即49=25+AC2-25AC(-12),
AC2+5AC-24=0.
AC=3或AC=-8(舍去).
答案:3
8.已知三角形的两边分别为4和5,它们的夹角的余弦值是方程2x2+3x-2=0的根,则第三边长是________.
解析:解方程可得该夹角的余弦值为12,由余弦定理得:42+52-24512=21,第三边长是21.
答案:21
9.在△ABC中,若sin A∶sin B∶sin C=5∶7∶8,则B的大小是________.
解析:由正弦定理,
得a∶b∶c=sin A∶sin B∶sin C=5∶7∶8.
不妨设a=5k,b=7k,c=8k,
则cos B=5k2+8k2-7k225k8k=12,
B=3.
答案:3
三、解答题
10.已知在△ABC中,cos A=35,a=4,b=3,求角C.
解:A为b,c的夹角,
由余弦定理得a2=b2+c2-2bccos A,
16=9+c2-635c,
整理得5c2-18c-35=0.
解得c=5或c=-75(舍).
由余弦定理得cos C=a2+b2-c22ab=16+9-25243=0,
∵0
11.在△ABC中,a、b、c分别是角A、B、C所对的边长,若(a+b+c)(sin A+sin B-sin C)=3asin B,求C的大小.
解:由题意可知,
(a+b+c)(a+b-c)=3ab,
于是有a2+2ab+b2-c2=3ab,
即a2+b2-c22ab=12,
所以cos C=12,所以C=60.
12.在△ABC中,b=asin C,c=acos B,试判断△ABC的形状.
解:由余弦定理知cos B=a2+c2-b22ac,代入c=acos B,
得c=aa2+c2-b22ac,c2+b2=a2,
△ABC是以A为直角的直角三角形.
又∵b=asin C,b=aca,b=c,
△ABC也是等腰三角形.
综上所述,△ABC是等腰直角三角形.
上述提供的高二数学重点希望能够符合大家的实际需要!
一年级下册《认识100以内的数字》教学设计
《长方形和正方形的面积计算》教学设计
《桌子有多长》说课稿
《找规律》重难点突破(第2课时)
二年级数学下册平均分人教版教案设计
一年级下册数学《人民币的认识》教学设计
《简单的小数加、减法》教学设计
二年级下册数学教学计划和教学进度
北师大版一年级下册《今天我当家》说课稿
人教版一年级下册《左右》教学计划
《找规律》重难点突破(第3课时)
2015年北师大版数学三年级下册教学计划附教学进度表
《小数的认识》教学设计
《两位数乘两位数—乘法估算》教学设计
《长度单位和面积单位的比较》教学设计
2014-2015年度苏教版二年级数学下册总复习计划
《两位数的乘法估算》教学设计
北师大版小学数学二年级第二学期教学计划
《100以内数的认识——读数、写数巩固练习》教学设计
《找规律》一年级下册说课稿
《万以内数的认识》教学设计
《一百以内的数》教学设计
人教版二年级下册《两位数加两位数口算》教学设计
小学数学二下《认识有余数的除法》教学设计
《比较小数的大小》教学设计
《近似数》教学设计
两位数减两位数退位减法教学设计
《乘法》教学设计
《笔算乘法(进位)》教学设计
小学数学公开课一年级下册《找规律》说课设计
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |