2016-05-05
收藏
以下是查字典数学网为您推荐的有理数加法-教案,希望本篇文章对您学习有所帮助。
有理数加法-
就第二章而言,有理数的加法是本章的一个重点。有理数这一章分为两大部分一---有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键是这一节的学习。
从以上两点不难看出它的地位和作用都是很重要的。
教学目的:
1、经历探索有理数加法法则,理解有理数加法的意义。
2、初步掌握有理数加法法则,并能准确地进行有理数加法运算。
教学重点:有理数的加法法则
教学难点:异号两数相加的法则
教学过程:
一、复习提问:
如果向东走5米记作+5米,那么向西走3米记作__.
二、授新课
小明在一条东西向的跑道上,先走了5米,又走了3米,能否确定他现在位于原来位置的哪个方向?与原来相距多少米?
规定向东的方向为正方向
提问:这题有几种情况?
小结:有以下四种情况
(1)两次都向东走,
(2)两次都向西走
(3)先向东走,再向西走
(4)先向西走,再向东走
根据小结,我们再分析每一种情况:
(1) 向东走5米,再向东走3米,这时他位于起点的什么方向?距离起点多少米?
+5 +3
(+5) +(+3) = +8
(2) 向西走- 5米,再向西走- 3米,这时他位于起点的什么方向?距离起点多少米?
- 3米 - 5米
-8
(-3 )+ (-5)=-8
(3) 先向东走5米,再向西走3米,这时他位于起点的什么方向?距离起点多少米?
+5
-3
+2
(+5)+(-3)=2
(4) 先向西走5米,再向东走3米,这时他位于起点的什么方向?距离起点多少米?
-5
+3
-2
(-5)+(+3)=-2
下面再看两种特殊情况:
(5) 向东走5米,再向西走-5米,这时他位于起点的什么方向?距离起点多少米?
+5
-5
(+5)+(-5)=0
(6) 向西走5米,再向东走0米,这时他位于起点的什么方向?距离起点多少米?
-5
(-5)+0 = -5
小结:总结前的六种情况:
同号两数相加:(+5)+(+3)=+(5+3)=8
(-5)+(-3)=-(5+3)=-8
异号两数相加:(+5)+(-3)=+(5+3)=+2
(-5)+(+3)=-(5-3)=-2
(+5)+(-5)=0
一数与零相加:(-5)+0=-5
得出结论:有理数加法法则
1、同号两数相加,取相同的符号,并把绝对值相加
2、绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3、互为相反数的两个数相加得零
4、一个数与零相加,仍得这个数
例如:(1)(-4)+(-5) (同号两数相加)
解:(-4)+(-5)
=- ( ) (取相同的符号)
=-9 (并把绝对值相加)
(2)(-2)+(+6) (绝对值不等的异号两数相加)
解:(-2)+(+6)
=+( ) (取绝对值较大的符号)
=+4 (用较大的绝对值减去较小的绝对值)
练习:
口答:
1、(-15)+(-32)=
2、(+10)+(-4)=
3、7+(-4)=
4、4+(-4)=
5、9+(-2)=
6、(-0.5)+4.4=
7、(-9)+0=
8、0+(-3)=
计算:
(1)(-3)+(-9) (2) (-1/2)+(+1/3)
解略
练习:
(1)15+(-22)=
(2)(-13)+(-8)=
(3)(-09)+15=
(4)27+(-35)=
(5)1/2+(-2/3)=
(6)(-1/4)+(-1/3)=
练习三:
1、填空:
(1) + 11 =27 (2)7+ =4
(3)(-9)+ =9 (4)12+ =0
(5)(-8)+ =-15 (6) +(-13)=-6
2、用或号填空:
(1)如果a0,那么a+b 0;
(2)如果a0,那么a+b 0;
(3)如果a0,|a||b|,那么a+b 0;
(4)如果a0,|a||b|,那么a+b 0
小结:
1、掌握有理数的加法法则,正确地进
行加法运算。
2、两个有理数相加,首先判断加法类
型,再确定和的符号,最后确定和的绝对值。
作业:课本第38页2、3
九年级数学上册单元测试试题2
九年级数学上册期中质量检测试题1
九年级数学综合性专题
九年级数学上册期中质量检测试题9
九年级数学解直角三角形分类汇编
九年级数学毕业生学业考试试题卷2
九年级数学矩形菱形正方形分类汇编2
九年级数学上册期中考试试卷
九年级数学直接开平方法同步练习1
九年级数学上册素质测评试卷
九年级数学上册期中考试试卷7
九年级数学毕业生学业考试试卷
九年级数学直接开平方法同步练习
九年级数学下册期中质量检测试题
九年级数学猜想性专题
九年级数学集合的概念与运算习题
九年级数学上册十二月月考试题1
九年级数学相似多边形的性质同步练习
九年级数学上册期中考试试卷5
九年级数学上册十月月考试题
九年级数学相似形测试卷
九年级数学上册期中质量检测试题8
九年级数学上册期中质量检查卷1
九年级数学上册单元测试试题3
九年级数学上册10月月考试题
九年级数学上册期中考试试卷6
九年级数学求阴影部分图形面积专题讲座
九年级数学上册期中质量检测试题5
九年级数学上册期中考试试卷1
九年级数学上册期中考试试卷2
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |