平行线的性质教案_教学设计 - 查字典数学网
数学平行线的性质教案
首页>数学教研>教学设计>平行线的性质教案

平行线的性质教案

2016-05-05 收藏

以下是查字典数学网为您推荐的平行线的性质教案,希望本篇文章对您学习有所帮助。

平行线的性质

教学目的

1.使学生掌握平行线的三个性质,并能运用它们作简单的推理.

2.使学生了解平行线的性质和判定的区别.

重点难点

1.平行的三个性质,是本节的重点,也是本章的重点之一.

2.怎样区分性质和判定,是教学中的一个难点.

教学过程

一、引入

问:我们已经学习过平行线的哪些判定公理和定理?

学生齐答:

1.同位角相等,两直线平行.

2.内错角相等,两直线平行.

3.同旁内角互补,两直线平行.

问:把这三句话颠倒每句话中的前后次序,能得怎样的三句话?新的三句话还正确吗?

学生答:

1.两直线平行,同位角相等.

2.两直线平行,内错角相等.

3.两直线平行,同旁内角互补.

教师指出:把一句原本正确的话,颠倒前后顺序,得到新的一句话,不能保证一定正确.例如,对顶角相等是正确的,倒过来说相等的角是对顶角就不正确了.因此,上述新的三句话的正确性,需要进一步证明.

二、新课

平行线的性质一:两条平行线被第三条直线所截,同位角相等.

简单说成:两直线平行,同位角相等.

怎样说明它的正确性呢?

方法一 通过测量实践,作出两条平行线a∥b,再任意作第三条直线c,量量所得的同位角是否相等.

方法二 从理论上给予严格推理论证.(以下证法,教师可视学生接受情况,灵活处理讲或者不讲)

已知:如图2-32,直线AB、CD、被EF所截,AB∥CD.

求证:2.

证明:(反证法)

假定2,

则过1顶点O作直线AB使EOB=2.

AB∥CD(同位角相等,两直线平行).

故过O点有两条直线AB、AB与已知直线CD平行,这与平行公理矛盾.即假定是不正确的.

2.

另证:(同一法)

过1顶点O作直线AB使E0B=2.

AB∥CD(同位角相等,两直线平行).

∵ AB∥CD(已知),且O点在AB上,O点在AB上,

AB与AB重合(平行公理)

2.

平行线的性质二:两条平线被第三条直线所截,内错角相等.

简单说成:两直线平行,内错角相等.

启发学生,把这句话翻译成已知、求证,并作出相应的图形.

已知:如图2-33,直线AB、CD被EF所截,AB∥CD,

求证:2.

证明:

∵ AB∥CD(已知)

2(两直线平行,同位角相等).

∵3(对顶角相等),

2(等量代换).

说明:如果学生仿照性质一,用反证法或同一法去证,应该给以鼓励.并同时指出,既然性质一已证明正确,那么也可以直接利用性质一的结论,这样常常可以使证明过程简单些.然后介绍或引导学生得出上面的证法.

平行线的性质三:两条平行线被第三条直线所截,同旁内角互补.

简单说成:两直线平行,同旁内角互补.

要求学生仿照性质二,自己写出已知、求证、证明.教师请程度较好的学生上黑板板演,并巡视课堂,帮助有困难的学生克服困难,最后对黑板上学生的板书进行全班订正.

已知:如图2-34,直线AB、CD被EF所截,AB∥CD.

求证:4=180.

证法一:

∵AB∥CD(已知),

2(两直线平行,同位角相等),

∵4=180(邻补角),

4=180(等量代换).

证法二:

∵ AB∥CD (已知),

3(两直线平行,内错角相等).

∵4=180(邻补角),

4=180(等量代换).

例 已知某零件形如梯形ABCD,现已残破,只能量得A=115,D=100,你能知道下底的两个角B、C的度数吗?根据是什么?(如图2-35).

解:B=180A=65,

C=180D=80.(根据平行线的性质三)

小结:平行线的性质与判定的区别:

1.从因果关系上看

性质:因为两条直线平行,所以

判定:因为,所以两条直线平行.

2.从所起作用上看

性质:根据两条直线平行,去证两角相等或互补:

判定:根据两角相等或互补,去证两条直线平行.

三、作业

1.如图,AB∥CD,1=102,求2、3、4、5的度数,并说明根据?

2.如图,EF过△ABC的一个顶点A,且EF∥BC,如果B=40,2=75,那么1、3、C、BAC+C各是多少度,为什么?

3.如图,已知AD∥BC,可以得到哪些角的和为180?已知AB∥CD,可以得到哪些角相等?并简述理由.

教后记:.

学生学习了这个平行线的性质后,不能理解它的用途,两直线平行不知道应该是哪些角应该相等,哪些角应该互补,哪个是前提哪个是结论不能充分的理解。导致使用的错误。应加强这方面的训练。学生图形的认识能力仍有待提高。

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限