2016-03-25
收藏
期中考试马上就要开始了,很多学生都在为期中考试的复习忙活不停,期中考试复习有一个很好的规划也是必不可少的。八年级数学期中试卷一文为同学们讲诉了期中考试前复习方法及复习计划安排。
一、选择题(每题2分,共20分)
1.下列数据中,哪一组能构成直角三角形( )
A. 1,2,3 B. 5,8,5 C. 3,4,5 D. 6,8,12
2.下列函数中,一次函数为( )
A. y=x3 B. y=2x2+1 C. y= D. y=﹣3x
3.估计 的值在( )
A. 2到3之间 B. 3到4之间 C. 4到5之间 D. 5到6之间
4.在实数中: ,|﹣3|, , , ,0.8080080008(相邻两个8之间0的个数逐次加1),无理数的个数有( )
A. 4个 B. 3个 C. 2个 D. 1个
5.若点A(x,3)与点B关于x轴对称,则( )
A. x=﹣2,y=﹣3 B. x=2,y=3 C . x=﹣2,y=3 D. x=2,y=﹣3
6.与2﹣ 相乘,结果是1的数为( )
A. B. 2﹣ C. ﹣2+ D. 2+
7.下列计算正确的是( )
A. + = B. 3+ =3 C. =3 D. =2
8.正比例函数y=kx(k0)的函数值y随x的增大而减小,则一次函数y=kx+k的图象大致是( )
A. B. C. D.
9.过点(﹣2,﹣4)的直线是( )
A. y=x﹣2 B. y=x+2 C. y=2x+1 D. y=﹣2x+1
10.如图,点A的坐标是,若点P在x轴上,且△APO是等腰三角形,则点P的坐 标可能有( )个.
A. 1个 B. 2个 C. 3个 D. 4个
二、填空题:(每小题2分,共20分)
11.比较大小:3 5 .
12. 的平方根是 .
13.图象经过(1,2)的正比例函数的表达式为 .
14.已知2a﹣1的平方根是3,则a= .
15.将直线y=2x向上平移1个单位后所得的图象对应的函数解析式为 .
16.如图,直线a的与坐标轴围成的三形的面积是 .
17.若点(1,m)和点(n,2)都在直线y=x﹣1上,则m+n的值为 .
18.直角三角形的两直角边的长分别为6cm、8cm,则斜边上高的长是 cm.
19.已知点(﹣5,y1),(0,y2)都在直线y=﹣3x+2上,则y1,y2的大小关系是 .
20.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿着直线AD折叠,使它落在斜边AB上,且与AE重合,则CD的长为 cm.
三、解答题:看准、想清、写明
21.计算题
①( + )2﹣
② +6 ﹣
③ ﹣4
④ + .
22.解方程
(1)(x﹣1)3=27
2x2﹣50=0.
23.如图,圆柱形玻璃容器,高8cm,底面周长为30cm,在外侧下底的点S处有一只蚂蚁,与蚂蚁相对的圆柱形容器的上口外侧的点F处有食物,求蚂蚁要吃到食物所走的最短路线长度. (画出侧面展开图并计算)
24.观察下列一组式的变形过程,然后回答问题:
例1: ,
例2: , ,
(1) = ; =
请你用含n(n为正整数)的关系式表示上述各式子的变形规律.
(3)利用上面的结论,求下列式子的值. .
25 .写出如图格点△ABC各顶点的坐标,求出此三角形的周长.
26.如图,lA、lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.
(1)B出发与A相距 千米.
B出发后 小时与A相遇.
(3)分别求出A、B行走的路程S与时间t的函数关系式.
(4)出发2时,A、B之间的距离是多?
(5)通过计说明谁到达30千米处?
参考答案与试题解析
一、选择题(每题2分,共20分)
1.下列数据中,哪一组能构成直角三角形( )
A. 1,2,3 B. 5,8,5 C. 3,4,5 D. 6,8,12
考点: 勾股数.
分析: 根据勾股定理的逆定理可知,当三角 形中三边的关系为:a2+b2=c2时,则三角形为直角三角形.
解答: 解:A、12+2232,故不是直角三角形,错误;
B、52+5282,故不是直角三角形,错误;
C、32+42=52,故是 直角三角形,正确;
2.下列函数中,一次函数为( )
A. y=x3 B. y=2x2+1 C. y= D. y=﹣3x
考点: 一次函数的定义.
分析: 利用一次函数的意义:一般地,形如y=kx+b(k0,k,b是常数),那么y叫做x的一次函数.当b=0时,y=kx+b即y=kx,即正比例函数,所以说正比例函数是一种特殊的一次函数,由此选择答案即可.
解答: 解:A、B、C都不是一次函数;
3.估计 的值在( )
A. 2到3之间 B. 3到4之间 C. 4到5之间 D. 5到6之间
考点: 估算无理数的大小.
专题:计算题.
分析: 利用夹逼法得出 的范围,继而也可得出 的范围.
4.在实数中: ,|﹣3|, , , ,0.8080080008(相邻两个8之间0的个数逐次加1),无理数的个数有( )
A. 4个 B. 3个 C. 2个 D. 1个
考点: 无理数.
分析: 无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
解答: 解:﹣ 、﹣ 、0.8080080008都是无理数,|﹣3|、 、 是有理数,
5.若点A(x,3)与点B关于x轴对称,则( )
A. x=﹣2,y=﹣3 B. x=2,y=3 C. x=﹣2,y=3 D. x=2,y=﹣3
考点: 关于x轴、y轴对称的点的坐标.
分析: 熟悉:平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y).
6.与2﹣ 相乘,结果是1的数为( )
A. B. 2﹣ C. ﹣2+ D. 2+
考点: 分母有理化.
分析: 用1除以2﹣ ,得出的结果即为所求的数.
7.下列计算正确的是( )
A. + = B. 3+ =3 C. =3 D. =2
考点: 二次根式的混合运算.
专题: 计算题.
分析: 根据合并同类二次根式对A进行判断;根据3与 的和不等于它们的积对B进行判断;根据二次根式的除法对C进行判断;根据算术平方根的定义对D进行判断.
解答: 解:A、 与 不是同类二次根式,不能合并,所以A选项错误;
B、3与 的和不等于它们的积,所以B选项错误;
8.正比例函数y=kx(k0)的函数值y随x的增大而减小,则一次函数y=kx+k的图象大致是( )
A. B. C. D.
考点: 一次函数的图象;正比例函数的性质.
专题: 压轴题.
分析: 因为正比例函数y=kx(k0)的函数值y随x的增大而减小,可以判断k再根据k0判断出y=kx+k的图象的大致位置.
解答: 解:∵正比例函数y=kx(k0)的函数值y随x的增大而减小,
一次函数y=kx+b的图象有四种情况:
①当k0,b0,函数y=kx+b的图象经过第二、三象、四象限;
②当k0,b0,函数y=kx+b的图象经过第一、三、四象限;
③当k0,b0时,函数y=kx+b的图象经过第一、二、四象限;
④当k0,b0时,函数y=kx+b的图象经过第二、三、四象限.
9.过点(﹣2,﹣4)的直线是( )
A. y=x﹣2 B. y=x+2 C. y=2x+1 D. y=﹣2x+1
考点: 一次函数图象上点的坐标特征.
分析: 把点(﹣2,﹣4)分别代入各直线的解析式进行检验即可.
解答: 解:A、当x=﹣2时,y=﹣2﹣2=﹣4,故本选项正确;
B、当x=﹣2时,y=﹣2+2=0﹣4,故本选项错误;
C、当x=﹣2时,y=﹣4+1=﹣3﹣4,故本选项错误;
10.如图,点A的坐标是,若点P在x轴上,且△APO是等腰三角形,则点P的坐标可能有( )个.
A. 1个 B. 2个 C. 3个 D. 4个
考点: 等腰三角形的判定;坐标与图形性质.
分析: 分以OA为腰和底边两种情况作出点P的位置,即可得解.
解答: 解:点P的位置如图所示共有4种情况,
二 、填空题:(每小题2分,共20分)
11.比较大小:3 5 .
考点: 实数大小比较.
分析: 首先把两个数平方,再根据实数的大小比较方法即可比较大小.
12. 的平方根是 2 .
考点: 算术平方根;平方根.
专题: 计算题.
分析: 先就算术平方根的定义求出 的值,然后根据平方根的概念求解.
解答: 解:∵82=64,
13.图象经过(1,2)的正比例函数的表达式为 y=2x .
考点: 待定系数法求正比例函数解析式.
专题: 压轴题;待定系数法.
分析: 本题中可设图象经过(1,2)的正比例函数的表达式为y=kx,然后结合题意,利用方程解决问题.
解答: 解:设该正比例函数的表达式为y=kx
14.已知2a﹣1的平方根是3,则a= 5 .
考点: 平方根.
分析: 根据平方根的定义列方程求解即可.
15.将直线y=2x向上平移1个单位后所得的图象对应的函数解析式为 y=2x+1 .
考点: 一次函数图象与几何变换.
分析: 根据上加下减的原则进行解答即可.
解答: 解:由上加下减的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1.
16.如图,直线a的与坐标轴围成的三形的面积是 3 .
考点: 一次函数图象上点的坐标特征.
分析: 直接根据三角形的面积公式解答即可.
解答: 解:∵由图可知,直线与坐标轴的交点分别为(3,0),(0,2),
17.若点(1,m)和点(n,2)都在直线y=x﹣1上,则m+n的值为 3 .
考点: 一次函数图象上点的坐标特征.
分析: 先把点(1,m)和点(n,2)代入直线y=x﹣1求出m、n的值,进而可得出结论.
解答: 解:∵点(1,m)和点(n,2)都在直线y=x﹣1上,
18.直角三角形的两直角边的长分别为6cm、8cm,则斜边上高的长是 4.8 cm.
考点: 勾股定理.
专题: 计算题.
分析: 先根据勾股定理求出直角三角形的斜边,然后从直角三角形面积的两种求法入手,代入公式后计算即可.
解答: 解:∵直角三角形两直角边分别为6cm,8cm,
斜边长为 =10cm.
∵直角三角形面积= 一直角边长另一直角边长= 斜边长斜边的高,
希望这篇八年级数学期中试卷,可以帮助更好的迎接新学期的到来!
小学数学《小数的基本性质》教学反思
《小数简算》教学反思二
小学数学《两位数乘两位数》教学反思
《小数点搬家》教学反思二
人教版小学数学《分数基本性质》教后反思
北京版《分数的基本性质》教学反思
《两位数乘两位数》教学反思二
《面积和周长的对比》教学反思
《平移和旋转》教学反思二
让学生学会学习
《整百数整千数加减法》教学反思
小学数学《合数与质数》教后反思
《亿以内数的大小比较》教学反思
《解决用乘除两步计算的问题》教后反思
《求一个数是另一个数的几倍》教学反思
《两位数加两位数口算》教学反思
《式与方程的复习》教学反思
小学数学《分数与除法(二)》教后反思
北师大版数学《铅笔有多长》教学反思
三年级下册《除数是一位数除法》教学反思
《整十数加、减整十数》教学反思三
北师大版数学《运白菜》教学反思
《锐角和钝角》教学反思二
小学数学《真分数和假分数》教后反思
《小数点移动引起小数大小的变化》教学反思
四年级下册《数图形中的学问》教学反思二
小学数学《简便运算知识的整理与复习》教学反思
人教版小学数学《求最大公因数》教后反思
人教版《分数乘分数》教学反思
人教版小学数学《约分》教学反思
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |