2015-12-31
收藏
【摘要】鉴于大家对查字典数学网十分关注,小编在此为大家整理了此文高二数学恪守练习题:函数的单调性与导数,供大家参考!
本文题目:高二数学恪守练习题:函数的单调性与导数
选修2-2 1.3.1 函数的单调性与导数
一、选择题
1.设f(x)=ax3+bx2+cx+d(a0),则f(x)为R上增函数的充要条件是()
A.b2-4ac0 B.b0,c0
C.b=0,c0 D.b2-3ac0
[答案] D
[解析] ∵a0,f(x)为增函数,
f(x)=3ax2+2bx+c0恒成立,
=(2b)2-43ac=4b2-12ac0,b2-3ac0.
2.(2009广东文,8)函数f(x)=(x-3)ex的单调递增区间是()
A.(-,2) B.(0,3)
C.(1,4) D.(2,+)
[答案] D
[解析] 考查导数的简单应用.
f(x)=(x-3)ex+(x-3)(ex)=(x-2)ex,
令f(x)0,解得x2,故选D.
3.已知函数y=f(x)(xR)上任一点(x0,f(x0))处的切线斜率k=(x0-2)(x0+1)2,则该函数的单调递减区间为()
A.[-1,+) B.(-,2]
C.(-,-1)和(1,2) D.[2,+)
[答案] B
[解析] 令k0得x02,由导数的几何意义可知,函数的单调减区间为(-,2].
4.已知函数y=xf(x)的图象如图(1)所示(其中f(x)是函数f(x)的导函数),下面四个图象中,y=f(x)的图象大致是()
[答案] C
[解析] 当0
f(x)0,故y=f(x)在(0,1)上为减函数
当x1时xf(x)0,f(x)0,故y=f(x)在(1,+)上为增函数,因此否定A、B、D故选C.
5.函数y=xsinx+cosx,x,)的单调增区间是()
A.-2和0,2
B.-2,0和0,2
C.-2和
D.-2,0和
[答案] A
[解析] y=xcosx,当-
cosx0,y=xcosx0,
当00,y=xcosx0.
6.下列命题成立的是()
A.若f(x)在(a,b)内是增函数,则对任何x(a,b),都有f(x)0
B.若在(a,b)内对任何x都有f(x)0,则f(x)在(a,b)上是增函数
C.若f(x)在(a,b)内是单调函数,则f(x)必存在
D.若f(x)在(a,b)上都存在,则f(x)必为单调函数
[答案] B
[解析] 若f(x)在(a,b)内是增函数,则f(x)0,故A错;f(x)在(a,b)内是单调函数与f(x)是否存在无必然联系,故C错;f(x)=2在(a,b)上的导数为f(x)=0存在,但f(x)无单调性,故D错.
7.(2007福建理,11)已知对任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x0时,f(x)0,g(x)0,则x0时()
A.f(x)0,g(x)0 B.f(x)0,g(x)0
C.f(x)0,g(x)0 D.f(x)0,g(x)0
[答案] B
[解析] f(x)为奇函数,g(x)为偶函数,奇(偶)函数在关于原点对称的两个区间上单调性相同(反),x0时,f(x)0,g(x)0.
8.f(x)是定义在(0,+)上的非负可导函数,且满足xf(x)+f(x)0,对任意正数a、b,若a
A.af(a)f(b) B.bf(b)f(a)
C.af(b)bf(a) D.bf(a)af(b)
[答案] C
[解析] ∵xf(x)+f(x)0,且x0,f(x)0,
f(x)-f(x)x,即f(x)在(0,+)上是减函数,
又0
9.对于R上可导的任意函数f(x),若满足(x-1)f(x)0,则必有()
A.f(0)+f(2)2f(1) B.f(0)+f(2)2f(1)
C.f(0)+f(2)2f(1) D.f(0)+f(2)2f(1)
[答案] C
[解析] 由(x-1)f(x)0得f(x)在[1,+)上单调递增,在(-,1]上单调递减或f(x)恒为常数,
故f(0)+f(2)2f(1).故应选C.
10.(2016江西理,12)如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t时刻五角星露出水面部分的图形面积为S(t)(S(0)=0),则导函数y=S(t)的图像大致为
()
[答案] A
[解析] 由图象知,五角星露出水面的面积的变化率是增减增减,其中恰露出一个角时变化不连续,故选A.
二、填空题
11.已知y=13x3+bx2+(b+2)x+3在R上不是单调增函数,则b的范围为________.
[答案] b-1或b2
[解析] 若y=x2+2bx+b+20恒成立,则=4b2-4(b+2)0,-12,
由题意b-1或b2.
12.已知函数f(x)=ax-lnx,若f(x)1在区间(1,+)内恒成立,实数a的取值范围为________.
[答案] a1
[解析] 由已知a1+lnxx在区间(1,+)内恒成立.
设g(x)=1+lnxx,则g(x)=-lnxx20 (x1),
g(x)=1+lnxx在区间(1,+)内单调递减,
g(x)
∵g(1)=1,
1+lnxx1在区间(1,+)内恒成立,
a1.
13.函数y=ln(x2-x-2)的单调递减区间为__________.
[答案] (-,-1)
[解析] 函数y=ln(x2-x-2)的定义域为(2,+)(-,-1),
令f(x)=x2-x-2,f(x)=2x-10,得x12,
函数y=ln(x2-x-2)的单调减区间为(-,-1).
14.若函数y=x3-ax2+4在(0,2)内单调递减,则实数a的取值范围是____________.
[答案] [3,+)
[解析] y=3x2-2ax,由题意知3x2-2ax0在区间(0,2)内恒成立,
即a32x在区间(0,2)上恒成立,a3.
三、解答题
15.设函数f(x)=x3-3ax2+3bx的图象与直线12x+y-1=0相切于点(1,-11).
(1)求a、b的值;
(2)讨论函数f(x)的单调性.
[解析] (1)求导得f(x)=3x2-6ax+3b.
由于f(x)的图象与直线12x+y-1=0相切于点(1,-11),所以f(1)=-11,f(1)=-12,
即1-3a+3b=-113-6a+3b=-12,
解得a=1,b=-3.
(2)由a=1,b=-3得
f(x)=3x2-6ax+3b=3(x2-2x-3)
=3(x+1)(x-3).
令f(x)0,解得x-1或x又令f(x)0,解得-1
所以当x(-,-1)时,f(x)是增函数;
当x(3,+)时,f(x)也是增函数;
当x(-1,3)时,f(x)是减函数.
16.求证:方程x-12sinx=0只有一个根x=0.
[证明] 设f(x)=x-12sinx,x(-,+),
则f(x)=1-12cosx0,
f(x)在(-,+)上是单调递增函数.
而当x=0时,f(x)=0,
方程x-12sinx=0有唯一的根x=0.
17.已知函数y=ax与y=-bx在(0,+)上都是减函数,试确定函数y=ax3+bx2+5的单调区间.
[分析] 可先由函数y=ax与y=-bx的单调性确定a、b的取值范围,再根据a、b的取值范围去确定y=ax3+bx2+5的单调区间.
[解析] ∵函数y=ax与y=-bx在(0,+)上都是减函数,a0,b0.
由y=ax3+bx2+5得y=3ax2+2bx.
令y0,得3ax2+2bx0,-2b3a
当x-2b3a,0时,函数为增函数.
令y0,即3ax2+2bx0,
x-2b3a,或x0.
在-,-2b3a,(0,+)上时,函数为减函数.
18.(2016新课标全国文,21)设函数f(x)=x(ex-1)-ax2.
(1)若a=12,求f(x)的单调区间;
(2)若当x0时f(x)0,求a的取值范围.
[解析] (1)a=12时,f(x)=x(ex-1)-12x2,
f(x)=ex-1+xex-x=(ex-1)(x+1).
当x(-,-1)时,f(x)当x(-1,0)时,f(x)当x(0,+)时,f(x)0.
故f(x)在(-,-1],[0,+)上单调递增,在[-1,0]上单调递减.
(2)f(x)=x(ex-1-ax).
令g(x)=ex-1-ax,则g(x)=ex-a.
若a1,则当x(0,+)时,g(x)0,g(x)为增函数,而g(0)=0,从而当x0时g(x)0,即f(x)0.
当a1,则当x(0,lna)时,g(x)0,g(x)为减函数,而g(0)=0,从而当x(0,lna)时g(x)0,即f(x)0.
综合得a的取值范围为(-,1].
【总结】2016年查字典数学网为小编在此为您收集了此文章高二数学恪守练习题:函数的单调性与导数,今后还会发布更多更好的文章希望对大家有所帮助,祝您在查字典数学网学习愉快!
第十二册百分数单元复习
第十二册折线统计图
球的教学设计《现代小学数学》第十二册
小学数学脑筋急转弯
桂林山水
第十一册林海
二年级有趣的数学问题
第十一册丑菊
第十二册认识图形
立方米的认识
第十一册仙人掌
第十二册圆柱的表面积
第十二册列方程解应用题
初中趣味数学 相撞前一秒
“圆锥的体积”教学设计与评析
第十一册两小儿辩日
五年级开心暑假泉州篇答案
第十二册比例尺
2013开心暑假答案(泉州篇)
2013年七年级开心暑假(泉州篇)答案
小学数学十二册教案
小学趣味数学 钟声
分数、小数加减混合运算
第十二册比例的意义和性质
凡卡
第十一册卖荸荠的小姑娘
小升初脑筋急转弯 分家畜
小升初趣味数学 旅行团巧分配房间
2013开心暑假泉州篇八年级答案
第十二册圆柱和圆锥
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |