2015-12-10 收藏
数学是研究现实世界空间形式和数量关系的一门科学。小编准备了高中一年级数学上册第三章模块综合检测试题,具体请看以下内容。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)
1.老师为研究男女同学数学学习的差异情况,对某班50名同学(其中男同学30名,女同学20名)采取分层抽样的方法,抽取一个样本容量为10的样本进行研究,求女同学甲被抽到的概率为()
A.150 B.110
C.15 D.14
[答案] C
[解析] 因为在分层抽样中,任何个体被抽取的概率均相等,所以某女同学甲被抽到的概率为P=1050=15,故应选C.
2.有分别写着数字1到120的120张卡片,从中取出1张,这张卡片上的数字是2的倍数或是3的倍数的概率是()
A.12 B.34
C.47 D.23
[答案] D
[解析] 2的倍数有60个,3的倍数有40个,6的倍数有20个,P=60+40-20120=23.
3.在区间(10,20]内的所有实数中随机取一个实数a,则这个实数a13的概率是()
A.13 B.17
C.310 D.710
[答案] C
[解析] 长度型几何概型,概率为310.
4.在200个产品中,一等品有60个,二等品有120个,三等品有20个,用分层抽样的方法抽取一个容量20的样本,则二等品中A被抽取到的概率()
A.等于15 B.等于110
C.等于23 D.不确定
[答案] B
[解析] 每一个个体被抽到的概率都相等,等于
20200=110.
5.一个正四面体的玩具,各面分别标有1,2,3,4中的一个数字,甲、乙两同学玩游戏,每人抛掷一次,朝下一面的数字和为奇数甲胜,否则乙胜,则甲胜的概率为()
A.13 B.12
C.23 D.34
[答案] B
[解析] 用(x,y)表示第一次抛掷朝下面的数字为x,第二次抛掷朝下一面的数字为y,则x,y的所有可能结果如表
第二次
第一次1234
1(1,1)(1,2)(1,3)(1,4)
2(2,1)(2,2)(2,3)(2,4)
3(3,1)(3,2)(3,3)(3,4)
4(4,1)(4,2)(4,3)(4,4)
共有基本事件16个,其中和为奇数的基本事件有(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3),所求概率P=816=12.
6.如右图所示,在一个边长为a、b(a0)的矩形内画一个梯形,梯形上、下底分别为13a与12a,高为b.向该矩形内随机投一点,则所投的点落在梯形内部的概率是()
A.710 B.57
C.512 D.58
[答案] C
[解析] 由几何概型知
P=12(13a+12a)bab=512.
7.掷两颗骰子,事件点数之和为6的概率是()
A.111 B.19
C.536 D.16
[答案] C
[解析] 掷两颗骰子,每颗骰子有6种可能结果,所以共有66=36个基本事件,这些事件出现的可能性是相同的;事件点数之和为6包括的基本事件有(1,5),(2,4),(3,3),(4,2),(5,1),共有5个.P=536.故选C.
8.设A为圆周上一点,在圆周上等可能的任取一点与A连接,则弦长超过半径2倍的概率是()
A.34 B.12
C.13 D.35
[答案] B
[解析] 作等腰直角三角形AOC和AMC,B为圆上任一点,则当点B在 上运动时,弦长|AB|2R,P=12.
9.已知正方体ABCD-A1B1C1D1内有一个内切球O,则在正方体ABCD-A1B1C1D1内任取点M,点M在球O内的概率是()
A. 8
C. 12
[答案] C
[解析] 设正方体棱长为a,则正方体的体积为a3,内切球的体积为43a23=16a3,故点M在球O内的概率为16a3a3=6.
10.袋中有红、黄、绿色球各一个,每次任取一个,有放回地抽取三次,球的颜色全相同的概率是()
A.127 B.19
C.29 D.227
[答案] B
[解析] 有放回地取球三次,共有不同结果33=27种,其中球的颜色全相同的取法有3种,
所求概率P=327=19.
11.设l是过点A(1,2)斜率为k的直线,其中k等可能的从集合{-1,-12,0,12,23,43,2,3}中取值,则原点到直线l的距离大于1的概率为()
A.38 B.58
C.12 D.34
[答案] B
[解析] l:y-2=k(x-1),即kx-y-k+2=0,
由题意|-k+2|1+k21,k2-4k+41+k2,
k34,故当k34时,事件A=原点到直线l的距离大于1发生,P(A)=58.
12.为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁~18岁的男生体重(kg),得到频率分布直方图如下:
根据上图可得这100名学生中体重在[56.5,64.5]的学生人数是()
A.20 B.30
C.40 D.50
[答案] C
[解析] ∵体重在[56.5,64.5]间的频率为:2(0.03+20.05+0.07)=0.4.
学生人数为0.4100=40人.
二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上)
13.口袋内装有一些大小相同的红球、黄球、白球,从中摸出一个球,摸出红球或白球的概率为0.65,摸出黄球或白球的概率是0.6,那么摸出白球的概率是______.
[答案] 0.25
[解析] 设摸出红球、白球、黄球的事件分别为A、B、C,由条件P(AB)=P(A)+P(B)=0.65,
P(BC)=P(B)+P(C)=0.6,
又P(AB)=1-P(C),P(C)=0.35,
P(B)=0.25.
14.在边长为2的正△ABC所在平面内,以A为圆心,3为半径画一弧,分别交AB、AC于D、E.若在△ABC这一平面区域内任丢一粒豆子,则豆子落在扇形ADE内的概率是________.
[答案] 36
[解析] 由题意知,△ABC中BC边上的高AO正好为3,
弧与AB相切,如图.
S扇形=12332,
S△ABC=122232=3,
P=S扇形S△ABC=36.
15.随意安排甲、乙、丙三人在3天节日中值班,每人值班1天,甲排在乙之前的概率是________.
[答案] 12
[解析] 甲、乙、丙三人排在三天中值班,每人1天,故甲在乙前和乙在甲前的机会相等,概率为12.
16.某汽车站每天均有3辆开往省城济南的分为上、中、下等级的客车,某天袁先生准备在该汽车站乘车前往济南办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他采取如下策略:先放过第一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆.那么他乘上上等车的概率为________.
[答案] 12
[解析] 共有6种发车顺序①上、中、下②上、下、中③中、上、下④中、下、上⑤下、中、上⑥下、上、中(其中画横线的表示袁先生所乘的车),所以他乘坐上等车的概率为36=12.
三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤)
17.(本题满分12分)指出下列事件是必然事件,不可能事件,还是随机事件?
(1)每天早晨,太阳从东方升起;
(2)在标准大气压下,水的温度达到80C时沸腾;
(3)某地3月4日出现沙尘暴天气;
(4)某寻呼机在一分钟内接到8次寻呼.
[解析] (1)每天早晨,太阳从东方升起是必然现象,所以是必然事件;
(2)因为在标准大气压下,水的温度达到100C时才可沸腾,所以(2)是不可能事件;
(3)某地出现沙尘暴天气是偶然的,因而在3月4日可能出现沙尘暴天气,也可能是晴天,故该事件是随机事件;
(4)某寻呼机在一分钟内接到的寻呼次数也可能低于8次,还可能高于8次,故该事件亦是随机事件.
[点评] 本例的求解关键在于准确理解几种事件各自的概念,注意判断的前提是在一定条件之下.例如(2),若没有标准大气压这一条件,水在80C时也可能会沸腾.
18.(本题满分12分)某城市有甲、乙两种报纸供居民们订阅,记事件A为只订甲报,事件B为至少订一种报,事件C为至多订一种报,事件D为不订甲报,事件E为一种报也不订.判断下列每对事件是不是互斥事件;如果是,再判断它们是不是对立事件.
(1)A与C (2)B与E
(3)B与D (4)B与C
(5)C与E
[解析] (1)由于事件C至多订一种报中有可能只订甲报,即事件A与事件C有可能同时发生,故A与C不是互斥事件.
(2)事件B至少订一种报与事件E一种报也不订是不可能同时发生的,故B与E是互斥事件.由于事件B发生可导致事件E一定不发生,且事件E发生会导致事件B一定不发生,故B与E还是对立事件.
(3)事件B至少订一种报中有可能只订乙报,即有可能不订甲报,即事件B发生,事件D也可能发生,故B与D不互斥.
(4)事件B至少订一种报中有这些可能:只订甲报、只订乙报、订甲、乙两种报,事件C至多订一种报中有这些可能:什么也不订、只订甲报、只订乙报,由于这两个事件可能同时发生,故B与C不是互斥事件.
(5)由(4)的分析,事件E一种报也不订只是事件C的一种可能,故事件C与事件E有可能同时发生,故C与E不互斥.
[点评] 由对立事件的定义可知,对立事件首先是互斥事件,并且其中一个一定要发生,因此两个对立事件一定是互斥事件,但两个互斥事件却不一定是对立事件.解题时一定要搞清两种事件的关系.
19.(本题满分12分)任选一个三位数,求恰好是100的倍数的概率.
[解析] 三位数共有900个,其中是100的倍数的三位数有9个,
所求概率为P=9900=0.01.
20.(本题满分12分)5张奖券中有2张是中奖的,首先由甲抽一张,然后由乙抽一张,求:
(1)甲中奖的概率P(A).
(2)甲、乙都中奖的概率P(B).
(3)只有乙中奖的概率P(C).
(4)乙中奖的概率P(D).
[解析] 将5张奖券编号为1,2,3,4,5,其中4、5为中奖奖券,用(x,y)表示甲抽到号码x,乙抽到号码y,则所有可能抽法构成集合={(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5),(3,1),(3,2),(3,4),(3,5),(4,1),(4,2),(4,3),(4,5),(5,1),(5,2),(5,3),(5,4)}.
(1)甲中奖包含8个基本事件,P(A)=820=25.
(2)甲、乙都中奖包含2个基本事件,
P(B)=220=110.
(3)只有乙中奖包含6个基本事件,P(C)=620=310.
(4)乙中奖包含8个基本事件,P(D)=820=25.
21.(本题满分12分)一个口袋里有2个红球和4个黄球,从中随机地连取3个球,每次取一个,记事件A=恰有一个红球,事件B=第3个是红球.求
(1)不放回时,事件A,B的概率.
(2)每次抽后放回时,A,B的概率.
[解析] (1)由不放回抽样可知,第一次从6个球中抽一个,第二次只能从5个球中取一个,第三次从4个球中取一个,基本事件共654=120个,又事件A中含有基本事件3243=72个,(第一个是红球,则第2、3个是黄球,取法有243种,第2个是红球和第3个是红球取法一样多)
P(A)=72120=35.
第3次抽到红球对前两次没有什么要求,因为红球数占总球数的13,在每一次抽到都是随机地等可能事件,P(B)=13.
(2)由放回抽样知,每次都是从6个球中取一个,有取法63=216种,事件A包含基本事件3244=96种.
P(A)=96216=49.
第三次抽到红球包括B1={红,黄,红},B2={黄,黄,红},B3={黄,红,红}三种两两互斥的情形,P(B1)=242216=227.P(B2)=442216=427,P(B3)=422216=227,
P(B)=P(B1)+P(B2)+P(B3)
=227+427+227=827.
[点评] (1)求基本事件总数可用平面直角坐标系中的点或空间直角坐标系中的点来直观数出,也可以直接用列举法.
(2)第三次抽到红球的概率只与红球所占比例有关与第n次抽样无关,也与有无放回抽样无关,故求某次取到某种样品的抽样问题,也可直接用比例算法求得.
22.(本题满分14分)设集合A={x|x+3x-30},若p、qA,求方程x2+2px-q2+1=0有两实根的概率.
[解析] A={x|-3
若使方程有两实根,应有
=(2p)2-4(-q2+1)=4p2+4q2-40,
p2+q21,
点(p,q)应落在圆x2+y2=1的外部,由几何概型的定义知,所求概率为P=S正方形ABCD-S圆S正方形ABCD=36-36.
高中是人生中的关键阶段,大家一定要好好把握高中,小编为大家整理的高中一年级数学上册第三章模块综合检测试题,希望大家喜欢。
四年级数学统计教案1
四年级数学信息窗5收获教案3
四年级数学参观博物馆教案
四年级数学信息窗3管理教案2
四年级数学工程问题
四年级数学信息窗4丰收教案2
四年级数学小数的意义和性质教案
四年级数学信息窗4丰收教案3
四年级数学梯形学案
四年级数学比较数的大小1
四年级数学简便计算教案1
四年级数学垂直与平行教案
四年级数学信息窗5收获教案2
四年级数学减法的运算性质
四年级数学周长和面积的对比
四年级数学信息窗3管理教案3
四年级数学加法的意义和加法交换律
四年级数学平行四边形和梯形4
四年级数学信息窗4丰收教案1
四年级数学含有几个小三角形
四年级数学口算加减法2
四年级数学信息窗2播种教案2
四年级数学分数连除和乘除混合运算
四年级数学等候时间
四年级数学小数和复名数
四年级数学简便计算教案2
四年级数学口算加减法1
四年级数学平行线教案
四年级数学有余数的除法
四年级数学信息窗2播种教案1
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |