高考数学一轮复习知识点总结:三角函数_数学笑话 - 查字典数学网
数学高考数学一轮复习知识点...
首页>数学杂谈>数学笑话>高考数学一...

高考数学一轮复习知识点总结:三角函数

2015-11-30 收藏

高考第一轮复习既以教材为基本内容,又以教学大纲以及当年的考试说明为依据,做到知识点的全面涉及与提高巩固。查字典数学网整理了高考数学一轮复习知识点总结:三角函数,供参考。

高中数学三角函数知识点总结:锐角三角函数公式

sin =的对边 / 斜边

cos =的邻边 / 斜边

tan =的对边 / 的邻边

cot =的邻边 / 的对边

倍角公式

Sin2A=2SinA?CosA

Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

tan2A=(2tanA)/(1-tanA^2)

(注:SinA^2 是sinA的平方 sin2(A) )

高中数学三角函数知识点总结:三倍角公式

sin3=4sinsin(/3+)sin(/3-)

cos3=4coscos(/3+)cos(/3-)

tan3a = tan a tan(/3+a) tan(/3-a)

高中数学三角函数知识点总结:三倍角公式推导

sin3a

=sin(2a+a)

=sin2acosa+cos2asina

高中数学三角函数知识点总结:辅助角公式

Asin+Bcos=(A^2+B^2)^(1/2)sin(+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

tant=B/A

Asin+Bcos=(A^2+B^2)^(1/2)cos(-t),tant=A/B降幂公式

sin^2()=(1-cos(2))/2=versin(2)/2

cos^2()=(1+cos(2))/2=covers(2)/2

tan^2()=(1-cos(2))/(1+cos(2))

高中数学三角函数知识点总结:推导公式

tan+cot=2/sin2

tan-cot=-2cot2

1+cos2=2cos^2

1-cos2=2sin^2

1+sin=(sin/2+cos/2)^2

=2sina(1-sin2a)+(1-2sin2a)sina

=3sina-4sin3a

cos3a

=cos(2a+a)

=cos2acosa-sin2asina

=(2cos2a-1)cosa-2(1-sin2a)cosa

=4cos3a-3cosa

sin3a=3sina-4sin3a

=4sina(3/4-sin2a)

=4sina[(3/2)2-sin2a]

=4sina(sin260-sin2a)

=4sina(sin60+sina)(sin60-sina)

=4sina*2sin[(60+a)/2]cos[(60-a)/2]*2sin[(60-a)/2]cos[(60-a)/2]

=4sinasin(60+a)sin(60-a)

cos3a=4cos3a-3cosa

=4cosa(cos2a-3/4)

=4cosa[cos2a-(3/2)2]

=4cosa(cos2a-cos230)

=4cosa(cosa+cos30)(cosa-cos30)

=4cosa*2cos[(a+30)/2]cos[(a-30)/2]*{-2sin[(a+30)/2]sin[(a-30)/2]}

=-4cosasin(a+30)sin(a-30)

=-4cosasin[90-(60-a)]sin[-90+(60+a)]

=-4cosacos(60-a)[-cos(60+a)]

=4cosacos(60-a)cos(60+a)

上述两式相比可得

tan3a=tanatan(60-a)tan(60+a)

高中数学三角函数知识点总结:半角公式

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

sin^2(a/2)=(1-cos(a))/2

cos^2(a/2)=(1+cos(a))/2

tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和

sin(++)=sincoscos+cossincos+coscossin-sinsinsin

cos(++)=coscoscos-cossinsin-sincossin-sinsincos

tan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)

高中数学三角函数知识点总结:两角和差

cos(+)=coscos-sinsin

cos(-)=coscos+sinsin

sin()=sincoscossin

tan(+)=(tan+tan)/(1-tantan)

tan(-)=(tan-tan)/(1+tantan)

高中数学三角函数知识点总结:和差化积

sin+sin = 2 sin[(+)/2] cos[(-)/2]

sin-sin = 2 cos[(+)/2] sin[(-)/2]

cos+cos = 2 cos[(+)/2] cos[(-)/2]

cos-cos = -2 sin[(+)/2] sin[(-)/2]

tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

高中数学三角函数知识点总结:积化和差

sinsin = [cos(-)-cos(+)] /2

coscos = [cos(+)+cos(-)]/2

sincos = [sin(+)+sin(-)]/2

cossin = [sin(+)-sin(-)]/2

高中数学三角函数知识点总结:诱导公式

sin(-) = -sin

cos(-) = cos

tan (a)=-tan

sin(/2-) = cos

cos(/2-) = sin

sin(/2+) = cos

cos(/2+) = -sin

sin() = sin

cos() = -cos

sin() = -sin

cos() = -cos

tanA= sinA/cosA

tan(/2+)=-cot

tan(/2-)=cot

tan()=-tan

tan()=tan

诱导公式记背诀窍:奇变偶不变,符号看象限

万能公式

sin=2tan(/2)/[1+tan^(/2)]

cos=[1-tan^(/2)]/1+tan^(/2)]

tan=2tan(/2)/[1-tan^(/2)]

高中数学三角函数知识点总结:其它公式

(1)(sin)^2+(cos)^2=1

(2)1+(tan)^2=(sec)^2

(3)1+(cot)^2=(csc)^2

证明下面两式,只需将一式,左右同除(sin)^2,第二个除(cos)^2即可

(4)对于任意非直角三角形,总有

tanA+tanB+tanC=tanAtanBtanC

证:

A+B=-C

tan(A+B)=tan(-C)

(tanA+tanB)/(1-tanAtanB)=(tan-tanC)/(1+tantanC)

整理可得

tanA+tanB+tanC=tanAtanBtanC

得证

同样可以得证,当x+y+z=nZ)时,该关系式也成立

由tanA+tanB+tanC=tanAtanBtanC可得出以下结论

(5)cotAcotB+cotAcotC+cotBcotC=1

(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC

(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

(9)sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)++sin[+2*(n-1)/n]=0

cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)++cos[+2*(n-1)/n]=0 以及

sin^2()+sin^2(-2/3)+sin^2(+2/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

高考数学一轮复习知识点总结:三角函数就分享到这里了,更多高考备考信息请继续关注查字典数学网高考频道!

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限