2015-11-20
收藏
高一数学练习题:单调性与最大最小值检测试题
1.函数f(x)=9-ax2(a0)在[0,3]上的最大值为()
A.9 B.9(1-a)
C.9-a D.9-a2
解析:选A.x[0,3]时f(x)为减函数,f(x)max=f(0)=9.
2.函数y=x+1-x-1的值域为()
A.(-,2 ] B.(0,2 ]
C.[2,+) D.[0,+)
解析:选B.y=x+1-x-1,x+10,
x1.
∵y=2x+1+x-1为[1,+)上的减函数,
f(x)max=f(1)=2且y0.
3.函数f(x)=x2-2ax+a+2在[0,a]上取得最大值3,最小值2,则实数a为()
A.0或1 B.1
C.2 D.以上都不对
解析:选B.因为函数f(x)=x2-2ax+a+2=(x-a)2-a2+a+2, 对称轴为x=a,开口方向向上,所以f(x)在[0,a]上单调递减,其最大值、最小值分别在两个端点处取得,即f(x)max=f(0)=a+2=3,
f(x)min=f(a)=-a2+a+2=2.故a=1.
4.(2010年高考山东卷)已知x,yR+,且满足x3+y4=1.则xy的最大值为________.
解析:y4=1-x3,01,0
而xy=x4(1-x3)=-43(x-32)2+3.
当x=32,y=2时,xy最大值为3.
答案:3
1.函数f(x)=x2在[0,1]上的最小值是()
A.1 B.0
C.14 D.不存在
解析:选B.由函数f(x)=x2在[0,1]上的图象(图略)知,
f(x)=x2在[0,1]上单调递增,故最小值为f(0)=0.
2.函数f(x)=2x+6,x[1,2]x+7,x[-1,1],则f(x)的最大值、最小值分别为()
A.10,6 B.10,8
C.8,6 D.以上都不对
解析:选A.f(x)在x[-1,2]上为增函数,f(x)max=f(2)=10,f(x)min=f(-1)=6.
3.函数y=-x2+2x在[1,2]上的最大值为()
A.1 B.2
C.-1 D.不存在
解析:选A.因为函数y=-x2+2x=-(x-1)2+1.对称轴为x=1,开口向下,故在[1,2]上为单调递减函数,所以ymax=-1+2=1.
4.函数y=1x-1在[2,3]上的最小值为()
A.2 B.12
C.13 D.-12
解析:选B.函数y=1x-1在[2,3]上为减函数,
ymin=13-1=12.
5.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L1=-x2+21x和L2=2x,其中销售量(单位:辆).若该公司在两地共销售15辆,则能获得的最大利润为()
A.90万元 B.60万元
C.120万元 D.120.25万元
解析:选C.设公司在甲地销售x辆(015,x为正整数),则在乙地销售(15-x)辆,公司获得利润L=-x2+21x+2(15-x)=-x2+19x+30.当x=9或10时,L最大为120万元,故选C.
6.已知函数f(x)=-x2+4x+a,x[0,1],若f(x)有最小值-2,则f(x)的最大值为()
A.-1 B.0
C.1 D.2
解析:选C.f(x)=-(x2-4x+4)+a+4=-(x-2)2+4+a.
函数f(x)图象的对称轴为x=2,
f(x)在[0,1]上单调递增.
又∵f(x)min=-2,
f(0)=-2,即a=-2.
f(x)max=f(1)=-1+4-2=1.
7.函数y=2x2+2,xN*的最小值是________.
解析:∵xN*,x21,
y=2x2+24,
即y=2x2+2在xN*上的最小值为4,此时x=1.
答案:4
8.已知函数f(x)=x2-6x+8,x[1,a],并且f(x)的最小值为f(a),则实数a的取值范围是________.
解析:由题意知f(x)在[1,a]上是单调递减的,
又∵f(x)的单调减区间为(-,3],
1
答案:(1,3]
9.函数f(x)=xx+2在区间[2,4]上的最大值为________;最小值为________.
解析:∵f(x)=xx+2=x+2-2x+2=1-2x+2,
函数f(x)在[2,4]上是增函数,
f(x)min=f(2)=22+2=12,
f(x)max=f(4)=44+2=23.
答案:23 12
10.已知函数f(x)=x2 -1211x 1
求f(x)的最大、最小值.
解:当-121时,由f(x)=x2,得f(x)最大值为f(1)=1,最小值为f(0)=0;
当1
即121.
综上f(x)max=1,f(x)min=0.
11.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(1)当每辆车的月租金为3600元时,能租出多少辆车?
(2)当每辆车的月租金为多少元时,租赁公司的月收益最大?最大月收益是多少?
解:(1)当每辆车的月租金为3600元时,未租出的车辆数为3600-300050=12.所以这时租出了88辆车.
(2)设每辆车的月租金为x元.则租赁公司的月收益为f(x)=(100-x-300050)(x-150)-x-30005050,
整理得
f(x)=-x250+162x-21000=-150(x-4050)2+307050.
所以,当x=4050时,f(x)最大,最大值为f(4050)=307050.即当每辆车的月租金为4050元时,租赁公司的月收益最大.最大月收益为307050元.
12.求f(x)=x2-2ax-1在区间[0,2]上的最大值和最小值.
解:f(x)=(x-a)2-1-a2,对称轴为x=a.
①当a0时,由图①可知,
f(x)min=f(0)=-1,
f(x)max=f(2)=3-4a.
②当01时,由图②可知,
f(x)min=f(a)=-1-a2,
f(x)max=f(2)=3-4a.
③当12时,由图③可知,
f(x)min=f(a)=-1-a2,
f(x)max=f(0)=-1.
④当a2时,由图④可知,
f(x)min=f(2)=3-4a,
f(x)max=f(0)=-1.
综上所述,当a0时,f(x)min=-1,f(x)max=3-4a;
当01时,f(x)min=-1-a2,f(x)max=3-4a;
当12时,f(x)min=-1-a2,f(x)max=-1;
当a2时,f(x)min=3-4a,f(x)max=-1.
小学第三册《我们赢了》(北师大)flash
北师大版二年级上观察物体看一看(二)
2014秋北师大版数学二上8.2《一共有多少天》ppt课件1
2014秋北师大版数学二上8.1《有多少张贴画》ppt课件6
北师大数学第三册《小兔安家》PPT课件2
小学第三册《长颈鹿和小鸟》1(北师大)
小学第三册《长颈鹿和小鸟》2(北师大)
北师大版小学数学第三册《小熊开店》
北师大版第三册《七的乘法口诀》
二年级上册《月球旅行》(北师大)
二年级上册《分桃子》(北师大)
2014秋北师大版数学二上8.2《一共有多少天》ppt课件2
2014秋北师大版数学二上8.1《有多少张贴画》ppt课件5
利辛县实验小学北师大第三册《东西南北》PPT课件
北师大数学第三册《小熊请客》PPT课件1
2014秋北师大版数学二上8.1《有多少张贴画》ppt课件4
飞行表演(北师大版二年级上册数学)
二年级上《个星期有几天――7的乘法口诀》(北师大版)
小学第三册《认识时分》(北师大)
北师大数学第三册《小熊开店》PPT课件1
2014秋北师大版数学二上8.2《一共有多少天》ppt课件3
2014秋北师大版数学二上8.2《一共有多少天》ppt课件4
小学第三册《交通与数学》(北师大)
二年级上册《抛硬币》(北师大)
二年级上册《东南西北》(北师大)
北师版第三册《回家路上》
北师大数学第三册《回家路上》PPT课件1
小学第三册《动物乐园》(北师大)
2014秋北师大版数学二上8.1《有多少张贴画》ppt课件2
小学第三册《送信(乘法)》(北师大)flash
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |