2015-11-19
收藏
为方便广大考生复习,查字典数学网整理了高一数学暑假补充练习习题,希望能助各位考生一臂之力。
一、填空题:本大题共14题,每小题5分,共70分.
1.若,则实数的值为 .
2.已知f(x)=ax3+bsinx+1,且f(-1)=5,则f(1)= .
3.已知不等式ax2-bx+20的解集为{x|1
4.已知是等差数列,,,则过点的直线的斜率 .
5.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,然后再将整个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数y=sinx的图象,则y=f(x)是 .
6.在样本的频率分布直方图中,共有4个长方形,这4个小长方形的面积由小到大构成等差数列{an},已知a2 = 2a1,且样本容量为400,则小长方形面积最大的一组的频数为 .
7.已知,则的值为.
8.对于下列的伪代码(nN*),给出如下判断:
①当输入n=2时,输出结果为1;②当输入n=3时,输出结果为1;
③当输入n=99时,输出结果一定是非负的.其中所有正确命题的序号为 .
9.在等腰直角三角形ABC的斜边AB上随机取一点M,则30的概率为 . 10.在△中,分别是角的对边,若成等差数列,则的最小值为 .
11.如图,设P是单位圆和轴正半轴的交点, M、N是单位圆上的两点,O是坐标原点,,,,,则的范围为 .12.设点,,如果直线与线段有一个公共点,那么的最小值为 .13.数列中,,且(,),则这个数列的通项公式 .
14.已知函数,若,且,则的取值范围为 .
二、解答题:本大题共6小题,共90分,解答应写出文字说明、证明过程或演算步骤.
15.(本小题满分14分)
已知集合,.
(1)若,求实数的值;
(2)设全集为,若,求实数的取值范围.
16.(本小题满分14分)
已知中,分别是角所对的边,且,向量和
满足.
(1)求的值;
(2)求证:为等边三角形.
17.(本小题满分14分)
已知函数.
(1)当时,求函数的值域;
(2)如果对任意的,不等式恒成立,求实数的取值范围.
18.(本小题满分16分)
在平面直角坐标系中,已知矩形的长为2,宽为1,、 边分别在轴、轴的正半轴上,点与坐标原点重合(如图所示)。将矩形折叠,使点落在线段上.
(1)若折痕所在直线的斜率为,试求折痕所在直线的方程;
(2)当时,求折痕长的最大值;
(3)当时,折痕为线段,设,试求的最大值.
19.(本小题满分16分)
若定义在R上的函数对任意的,都有成立,且当时, .
(1)求的值;
(2)求证:是R上的增函数;
(3) 若,不等式对任意的恒成立,求实数的取值范围.
20.(本小题满分16分)
已知各项均为正数的等差数列{an}的公差d不等于0,设a1、a3、ak是公比为q的等比数列{bn}的前三项.
(1) 若k=7,a1=2.
① 求数列{anbn}的前n项和Tn;
② 将数列{an}与{bn}中相同的项去掉,剩下的项依次构成新的数列{cn},设其前n项和为Sn,求-22n-1+32n-1的值;
(2)若存在mk,mN*使得a1、a3、ak、am成等比数列,求证:k为奇数.
十一参考答案
一、填空题:
1.答案:2 解析:或,.
2.答案:-3 解析:f(-x)+ f(x)=2,f(-1)+ f(1)=2,f(1)=-3.
3.答案:1,3 解析:ax2-bx+2=0两根为1、2即得.
4.答案:4 解析:由得=11,由斜率公式得.
5.答案:y=sin(2x-)+1解析:略.
6.答案:160 解析:公差d = a1,4a1 +=1,a1= 0.1 a4= 0.4 最大的一组的频数为0.4400=160.
7.答案:-a 解析:.
8.答案:①②③ 解析:算法的功能是每循环一次,实现a、b的一次互换, 并最终输出c的绝对值.
9.答案: 解析:在AB上取点D,使ACD =30,可设AC=a,则AB=,由正弦定理求得AD=,由几何概型可得.
10.答案: 解析:(当且仅当时等号成立).
11.答案: 解析:.
12.答案: 解析:由题意A、B两点在直线的异侧,则,画出其区域,原点到直线的距离的平方为的最小值.
13.答案: 解析:原式即,为公差是1的等差数列,
,.
14.答案: 解析:画出的简图, 由题意可知,
∵,,,∵
.
二、解答题:
15.解:(1)易得集合,集合,
由得所以m=5.
(2)由(1)得,
因为,所以,解得.
16.解:(1)由得,,
又B=(A+C),得cos(AC)cos(A+C)=, 即cosAcosC+sinAsinC(cosAcosCsinAsinC)=,所以sinAsinC=;
(2)由b2=ac及正弦定理得,故.
于是,所以或.
因为cosB =cos(AC)0, 所以 ,故.
由余弦定理得,即,
又b2=ac,所以 得a=c.
因为,所以三角形ABC为等边三角形.
17.解:(1).
因为,所以,故函数的值域为.
(2)由得,
令,因为,所以,
所以对一切的恒成立.
当时,;
当时,恒成立,即,
因为,当且仅当,即时取等号,
所以的最小值为.
综上,.
18.解:(1) ①当时,此时点与点重合, 折痕所在的直线方程
②当时,将矩形折叠后点落在线段上的点记为,
所以与关于折痕所在的直线对称,
有故点坐标为,
从而折痕所在的直线与的交点坐标(线段的中点)为
折痕所在的直线方程,即
由①②得折痕所在的直线方程为:
(2)当时,折痕的长为2;
当时,折痕直线交于点,交轴于
∵
折痕长度的最大值为.
而 ,故折痕长度的最大值为
(3)当时,折痕直线交于,交轴于
∵
∵ (当且仅当时取=号)
当时,取最大值,的最大值是.
19.解:(1)定义在R上的函数对任意的,
都有成立
令
(2)任取,且,则
是R上的增函数
(3)∵,且,
由不等式得 由(2)知:是R上的增函数,
.
令则,故只需 .
当即时,
当即时,
当即时,
综上所述, 实数的取值范围 .
20.解:(1)因为k=7,所以a1、a3、a7成等比数列.又{an}是公差d0的等差数列,
所以(a1+2d)2=a1(a1+6d),整理得a1=2d.
又a1=2,所以d=1.
b1=a1=2,q====2,
所以an=a1+(n-1)d=n+1,bn=b1qn-1=2n .
① 用错位相减法可求得{anbn}的前n项和为Tn=n
② 因为新的数列{cn}的前2n-n-1项和为数列{an}的前2n-1项的和减去数列{bn}前n项的和,
所以=-=(2n-1)(2n-1-1).所以-22n-1+32n-1=1.
(2)证明:由(a1+2d)2=a1[a1+(k-1)]d,整理得4d 2=a1d(k-5).
因为d0,所以d=,所以q===.
因为存在mk,mN*使得a1、a3、ak、am成等比数列,所以am=a1q3=a13
又在正项等差数列{an}中,am=a1+(m-1)d=a1+,
所以a1+=a13,
又a10,所以有2[4+(m-1)(k-5)]=(k-3)3,
因为2[4+(m-1)(k-5)]是偶数,所以(k-3)3也是偶数,即k-3为偶数,所以k为奇数.
小学六年级上册数学期末检测卷
2015年小学六年级下册数学第四单元检测题
高二数学寒假作业练习2016
六年级上学期数学期末考试卷西师版
小学数学六年级上册期末试卷(人教版)
小学六年级下册数学期中试卷及答案
六年级下册数学期中试卷及答案2015
二年级小学生数学寒假作业分享
苏教版六年级上册数学期末试题2015年
六年级数学第一单元上册试题西师大版
小学六年级数学下册期中练习题
六年级数学上学期期末易错题复习(青岛版)
高二数学暑期强化训练题精选
小学数学六年级上册第二单元试卷
2015年六年级数学下册第四单元自测卷
六年级下册数学期中测试题
小学六年级下册数学第三单元检测试卷(苏教版)
人教版小学六年级上册数学期末试卷及答案
北师大版数学六年级下册第三单元试题
苏教版数学六年级上学期第一单元试题
青岛版六年级数学上学期第二单元检测题
小学六年级第一学期数学期末试卷(附带答案)
小学六年级数学上册期末试卷及答案2015
六年级数学上册期末专项练习(计算题)
小学六年级下册数学期中测试卷
人教版六年级上学期数学第一单元试卷
2015年人教版六年级数学下册第三单元试卷
2015年六年级上册数学期末试卷(附带答案)
小学六年级下册数学第三单元试卷(含答案)
六年级上学期数学第二单元试卷人教版
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |