2015-11-19
收藏
摘要:查字典数学网的小编为大家整理了2014高一数学暑假作业,供大家参考,希望小编的总结可以帮助到大家,祝大家在查字典数学网学习愉快。
一、选择题
1.T1=,T2=,T3=,则下列关系式正确的是()
A.T1,
即T2bd
B.dca
C. dba
D.bda
【解析】 由幂函数的图象及性质可知a0,b1,0ca.故选D.
【答案】 D
3.设α∈{-1,1,,3},则使函数y=xα的定义域为R且为奇函数的所有α的值为()
A.1,3 B.-1,1
C.-1,3 D.-1,1,3
【解析】 y=x-1=的定义域不是R;y=x=的定义域不是R;y=x与y=x3的定义域都是R,且它们都是奇函数.故选A.
【答案】 A
4.已知幂函数y=f(x)的图象经过点,则f(4)的值为()
A.16 B.2
C. D.
【解析】 设f (x)=xα,则2α==2-,所以α=-,f(x)=x-,f(4)=4-=.故选C.
【答案】 C
二、填空题5.已知n∈{-2,-1,0,1,2,3},若nn,则n=________.
【解析】 ∵--,且nn,
∴y=xn在(-∞,0)上为减函数.
又n∈{-2,-1,0,1,2,3},
∴n=-1或n=2.【答案】 -1或2
6.设f(x)=(m-1)xm2-2,如果f(x)是正比例函数,则m=________,如果f(x)是反比例函数,则m=________,如果f(x)是幂函数,则m=________.
【解析】 f(x)=(m-1)xm2-2,
若f(x)是正比例函数,则∴m=±;
若f(x)是反比例函数,则即∴m=-1;
若f(x)是幂函数,则m-1=1,∴m=2.
【答案】 ± -1 2
三、解答题
7.已知f(x)=,
(1)判断f(x)在(0,+∞)上的单调性并证明;
(2)当x∈[1,+∞)时,求f(x)的最大值.
【解析】 函数f(x)在(0,+∞)上是减函数.证明如下:任取x1、x2∈(0,+∞),且x10,x2-x10,x12x220.
∴f(x1)-f(x2)0,即f(x1)f(x2).
∴函数f(x)在(0,+∞)上是减函数.
(2)由(1)知,f(x)的单调减区间为(0,+∞),∴函数f(x)在[1,+∞)上是减函数,
∴函数f(x)在[1,+∞)上的最大值为f(1)=2.
8.已知幂函数y=xp-3(p∈N*)的图象关于y轴对称,且在
(0,+∞)上是减函数,求满足(a-1)(3+2a)的a的取值范围.
【解析】 ∵函数y=xp-3在(0,+∞)上是减函数,
∴p-30,即p3,又∵p∈N*,∴p=1,或p=2.
∵函数y=xp-3的图象关于y轴对称,
∴p-3是偶数,∴取p=1,即y=x-2,(a-1)(3+2a)
∵函数y=x在(-∞,+∞)上是增函数,
∴由(a-1)(3+2a),得a-13+2a,即a-4.
∴所求a的取值范围是(-4,+∞).
总结:2014高一数学暑假作业就为大家介绍到这儿了,希望小编的整理可以帮助到大家,祝大家学习进步。
新课程改革的研究与实践
提高课堂教学的有效性
如何做才能促进教学的活泼发展
小学数学新课标的理解
教学心得:用爱来感悟
浅谈怎样把生活融入数学教学
只有创造才能有收获
案例展示和评析后的收获
课程改革交流给予哪些指导与帮助
谈谈开拓课堂教学的新思路
浅谈小学数学教学中学生学习兴趣的培养
胆创新与探索 提高教学效益
什么样的课堂才是学生喜爱的课堂
使自己的教学闪耀着睿智的光彩
面向全体学生 关注学生差异
什么样的教学才是有效的呢
恰当的提问与有效的追问
高效数学课堂提问的几个有效做法
数学合作学习的形式
数学课小组合作探索后的思考
小学数学作业批改问题的研讨
为教学能力的提升奠定下基础
课堂教学之自己的学习体会
谈谈高效课堂模式应用于实际教学中
如何让数学走进生活
小学数学教学中思想方法渗透策略
如何设计小学数学课堂教学结构
观看了课堂教学视频 谈谈我的收获
激发学生学习的积极性
如何打造适合自己的高效课堂
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |