2018-07-27
收藏
在二次函数的题中,我们经常会遇到一次函数与二次函数相交的境况。查字典数学网为大家整理了二次函数的图象与性质知识点,希望对大家有帮助!
知识点
一般地,自变量x和因变量y之间存在如下关系:
函数图像
y=ax^2+bx+c
(a,b,c为常数,a≠0,且a决定函数的开口方向, a>0时,开口方向向上, a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
表达式
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]
交点式:y=a(x-x₁)(x-x ₂) [仅限于与x轴有交点A(x₁ ,0)和 B(x₂,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2a k=(4ac-b^2)/4a x₁,x₂=(-b±√b^2-4ac)/2a
图象
在平面直角坐标系中作出二次函数y=x^2的图象,
可以看出,二次函数的图象是一条抛物线。
性质
1.抛物线是轴对称图形。对称轴为直线x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a )
当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ= b方-4ac>0时,抛物线与x轴有2个交点。
Δ= b方-4ac=0时,抛物线与x轴有1个交点。
Δ= b方-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)
位置关系
二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
解析式 顶点坐标 对 称 轴
y=ax^2 (0,0) x=0
y=a(x-h)^2 (h,0) x=h
y=a(x-h)^2+k (h,k) x=h
y=ax^2+bx+c (-b/2a,[4ac-b^2]/4a) x=-b/2a
当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,
当h<0时,则向左平行移动|h|个单位得到.
当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2 +k的图象;
当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
当h<0 k="">0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;
当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.
2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).
3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.
4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△=b^2-4ac>0,图象与x轴交于两点A(x₁,0)和B(x₂,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的两根.这两点间的距离AB=|x₂-x₁|
当△=0.图象与x轴只有一个交点;
当△<0 x="" a="">0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.
5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a.
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.
课后练习

二次函数的图象与性质知识点的全部内容就是这些,不知道大家是否已经都掌握了呢?预祝大家可以更好的学习,取得优异的成绩。
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
初三数学视频
更多
相关数学笑话推荐
大家都在看
数学脑筋急转弯:舔冰棒
数学脑筋急转弯:夜黑风高的晚上
数学脑筋急转弯:洪水淹桥
数学脑筋急转弯:孩子吃饼
数学脑筋急转弯:棒球比赛
数学脑筋急转弯:猜数
数学脑筋急转弯:几个子女
数学脑筋急转弯:妈妈熨烫衣服
数学脑筋急转弯:学生排队
数学脑筋急转弯:分袋装苹果
数学脑筋急转弯:渡船
数学脑筋急转弯:手指受伤
数学脑筋急转弯:太阳转动
数学脑筋急转弯:地球与太阳
数学脑筋急转弯:妈妈买鱼
数学脑筋急转弯:分馒头
数学脑筋急转弯:烟鬼抽烟
数学脑筋急转弯:买衬衫
数学脑筋急转弯:汤姆过生日
数学脑筋急转弯:裁缝剪呢料
数学脑筋急转弯:分苹果
数学脑筋急转弯:丢钱
数学脑筋急转弯:按时吃药
数学脑筋急转弯:砸玻璃
数学脑筋急转弯:时针和分针重合
数学脑筋急转弯:吹蜡烛
数学脑筋急转弯:看棒球赛
数学脑筋急转弯:放大镜
数学脑筋急转弯:四减一等于五
数学脑筋急转弯:小朋友游泳
| 小学 |
| 初中 |
| 高中 |
| 不限 |
| 一年级 | 二年级 |
| 三年级 | 四年级 |
| 五年级 | 六年级 |
| 初一 | 初二 |
| 初三 | 高一 |
| 高二 | 高三 |
| 小考 | 中考 |
| 高考 |
| 不限 |
| 数学教案 |
| 数学课件 |
| 数学试题 |
| 不限 |
| 人教版 | 苏教版 |
| 北师版 | 冀教版 |
| 西师版 | 浙教版 |
| 青岛版 | 北京版 |
| 华师大版 | 湘教版 |
| 鲁教版 | 苏科版 |
| 沪教版 | 新课标A版 |
| 新课标B版 | 上海教育版 |
| 部编版 |
| 不限 |
| 上册 |
| 下册 |
| 不限 |