2018-04-20
收藏
素质教育的核心,就是要培养创新型人才。旧的教育模式培养出来的学生只懂死记硬背,不会灵活变通,不善于发展创造。固然学习成绩不凡,可高分低能者多多,毕业后有较大作为的,反而是成绩不那么突出者。传统的教育体制,授学过程、评价机制,都只重视对知识的机械接受而忽视数学能力的培养,这样明显不适应社会的发展了。
教育的目的,除了要使学生具有高深的知识外,还应时刻把培养学生的创新意识,提高学生的创造力放在重要的地位。具有创新能力的人才,才是社会主义社会建设所需要的新型人才。数学作为一门比较抽象,注重推理的学科,使得我们更要认真培养学生的创新能力,使学生对知识能够融汇贯通,这样才能有所进步,有所超越。我认为,数学教学要做到以下几点:
一、对症下药,使学生的创新能力有发展的空间
如何能够使学生创新能力得以发挥呢?我们应对学生充分了解,掌握学生的个性特征,精心选择一些能激发学生探索欲望,利于提高学生创新能力的习题和例题。数学不必追求面面俱到,各种题型都让学生 “尝透”,这是不可能的。我们宜注重培养学生举一反三能力,使学生理解能力获得提高,进而提高学生分析问题和解决问题的能力,进而为学生的创新能力的发挥创造了条件。教师要切实做好的工作是“唤醒”学生创造热情,而不是压制和打击,故在教学上应大胆突破,在教与学观念上也有所更新,要改变过去那种唯师为尊的思想和作法。师生之间不妨多探讨少命令,创造一些民主气氛,对学生多鼓励少批评。要创造和谐的师生关系,这样可能缩短师生之间的距离,也使学生乐于听数学课,为今后对学生创新能力的培养准备了开启的钥匙。
二、培养学生的直觉思维能力,使学生善于创新
所谓直觉思维能力,是指不经逐步分析,严密推理与论证,而根据已有的知识迅速对问题的结论作出初步推测的一种思维能力。这种思维的特点是浓缩性与高度跳跃性,受学生所喜爱,它极易创造一种“冒险心理”和“满足感”,因而有利于学生创新能力培养。数学教师在讲解习题和例题时,可选择一些直觉思维与逻辑思维相结合的题目,先让学生凭直觉猜测结论,然后依据逻辑思维给予证明。经过一次次的对比,总结,使学生的猜测一次比一次准确,这样会有利于学生创新能力的发挥。
例如:在Rt△ABC中,∠C=90°,AB=2,求 和 的值。分析:本题根据Rt△ABC中,30°所对的直角边等于斜边的一半,可求出BC=1,用勾股定理可得AB= ,两个比的值求出。教师可再提问:①若题目中30°条件去掉,能不能求出比值?②若题目中AB=2去掉,能不能求出两比值?学生的直觉思维就会发生作用了,随着∠A角度的变化,一种可能是∠A=45°,这时∠B=45°,此时△ABC为等腰直角三角形了!学生就会作出猜测,第一种情况无法求出两个比值。在第②题中,AB=2去掉,教师可提问学生这时AB可能有什么情况?当然可能变为大于2或者小于2,再提问学生AB2时,BC比原来大还是小?AC呢?学生比较容易得出BC、AC都比原来大。这时教师可紧接着问学生:当斜边增大时,另外两条边也相应变大,大家猜测一下,两个比值是如何变化?还是不变?许多学生根据刚才教师的启发,就会猜测比值不变!这个猜测是对的。在猜测过程中,通过观察,实际图形是“动”起来了。这种猜测在课堂上,学生是乐于接受的,如果掌握得当,所提出的猜测问题会一下子吸引学生的注意力,课堂上会突然十分宁静,那是学生在积极地思索,在进行直觉思维的各种判断。通过这样直觉思维的训练,事后再结合逻辑的证明,无疑会提高学生直觉的正确率,对促进学生创新能力的发挥非常有利。
三、培养学生求异思维能力,使他们乐于创新
求异思维要求学生从已知出发,合理想象。找出不同于惯常的思路,寻求变异,伸展扩散的一种活动。教师应注意培养学生熟悉每一个基本概念、基本原理、公理、定理、法则、公式,让学生清楚它们各自的适用性。在具体题目中应引导学生多方位思考,变换角度思维,让学生思路开阔,时刻处于一种跃跃欲试的心理状态。
例:等腰三角形ABCD中,对角线AC、BD交于点O,且AC⊥BD,AD=3,BC=
7,求梯形ABCD的面积。
法一:可作AE⊥BC,垂足分别为E、F得AEFD为矩形。
△ ABE≌△DCF,可求BF长度,又通过三角形全等得
∠1=∠2=45,所以∠3=45°,得DF=BF=5,可求面积。
法二:作DE//AC,交BC延长线于点E,这样可得△BDE为等腰直角三角形,取BE中点F,连结DF,据Rt三角形斜边中线等于斜边一半行DF长度,DF即梯形高,可求面积。
法三:过O点作EF⊥AD,垂足为E,交BC于F,可证EF⊥BC,据三角形全等得∠1=∠2,所以OB=OC,OF是等腰三角形斜边上中线,OF= AD,同理OE= AD求出EF再求面积。
法四:先证∠1=∠2,得△OBC是等腰直角三角形,可据勾股定理得OA=OD= ,OB=OC= ,这样S= AC?BD,代入可求值。
分析上面的四种解法后,不妨再问:梯形中常用辅助线作法有作两条高,平移一腰、平移一对角线等等,那么本题平移AB,行不行?
培养学生多方面,多角度地思考问题固然十分重要,因为它可以极大地活跃学生的思维,提高学生创新能力。另外,教师也必须培养学生对多种思路中选择一种易于表达的方法,特别要提高学生的判断、估计能力,避免学生一旦方法选择错误,而不知回头开辟新思路,这样反而对学生的创新积极性受到伤害。
四、加强数学过程的教育,提高学生的创新能力
传统的数学教学中,往往只重视结论而忽视过程,这样造成学生只懂得死记硬背,遇到问题多采取生搬硬套的作法,学生在听课时看不到数学知识的形成过程。我们要重视定理、公式、法则等的推导过程。如当初科学家发现该结论时那样既体现各种不同的思路,又分析各种思路正确与否。这样,激发了学生的创造欲望,使他们创新能力获得提高。
新人教版小学第九册小数乘法复习
人教版新课标五上《统计与可能性》FLASH课件
人教版五年级上册《小数的乘法》2
官塘桥中心小学人教版五上《小数乘整数》PPT课件4
人教版五年级上册《用式子表示天平平衡》
太师附小人教版五上《可能性的大小》PPT课件4
人教版新课标五上《小数除以整数》PPT课件1
明珠小学人教版五上《平行四边形面积计算》PPT课件3
柳桥中心小学人教版五上《小数除以整数》PPT课件
新人教版小学第九册小数乘除法整理与复习
人教版五年级上册《中位数》2
新人教版五年级上除数是整数的小数除法(1)
平安小学人教版五上《平行四边形面积计算》说课PPT课件
人教版新课标五上《循环小数》PPT课件6
人教版五年级上册《行程问题》2
人教版五年级上册《一个数乘小数》
新人教版五年级上小数的除法
求一个数的几分之几是多少的应用题
凌兆小学人教版五上《三角形面积》PPT课件3
玫瑰小学人教版五上《商的近似数》PPT课件
新人教版小学第九册连除应用题
人教版五年级上册《中位数》1
望花小学人教版五上《用字母表示数》PPT课件5
安阳东南营小学人教版五上《可能性》PPT课件
人教版五年级上册《小数除法的意义》
人教版新课标五上《小数除以整数》PPT课件3
宏育学校人教版五上《循环小数》PPT课件
新人教版五年级上除数是整数的小数除法(2)
人教版五年级上册《组合图形面积计算练习》
殷都实验小学人教版五上《笔算除法》PPT课件
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |